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Summary. We consider a large class of non compact hyperbolic manifolds M =
IHn/Γ with cusps and we prove that the winding process (Yt) generated by a closed
1-form supported on a neighborhood of a cusp C, satisfies a limit theorem, with an
asymptotic stable law and a renormalising factor depending only on the rank of the
cusp C and the Poincaré exponent δ of Γ. No assumption on the value of δ is required
and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J.
Franchi and N. Enriquez.

Résumé. Nous considérons une large classe de variétés hyperboliques non-compactes
M = IHn/Γ possédant des cusps et nous démontrons que le processus (Yt) engendré
par une forme fermée portée par un voisinage d’un cusp C converge en loi vers une loi
stable ; la loi limite et le facteur de renormalisation dépendent de la nature du cusp et
de l’exposant de Poincaré δ du groupe Γ. Aucune restriction sur la valeur de δ n’est
imposée et cet article généralise ainsi toute une série de résultats dus à Y. Guivarc’h,
Y. Le Jan, J. Franchi et N. Enriquez.
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I Introduction.

Sinai’s observation that “dynamical systems generated by geodesic flows of negatively
curved manifolds have a structure analogous to that off dynamical systems generated
by stochastic processes” lead him to the proof of a Central Limit Theorem for certain
additive functionals of the geodesic flow on a compact hyperbolic manifold M . A
typical example of such a functional, due to Gel’fand and Pyateckii-Shapiro ([15]), is
the “winding process”, that is the process generated by a closed 1-form on M .
Consider now a (not necessarily compact) hyperbolic manifold M = IH/Γ where
Γ is a torsion-free group acting isometrically and properly discontinuously on the
hyperbolic space IH. When Γ is geometrically finite, the manifold M is the union of
a compact core and finitely many ends, some of which are funnels, and the other ones
are cusps. If a geodesic enters a funnel, it goes to infinity without ever returning to
the compact core. On the contrary, a typical geodesic entering a cusp does come back
in the compact core infinitely often and thus belongs to the non-wandering set of the
geodesic flow. These excursions in the cusps are related to diophantine approximation
in number theory when Γ is arithmetic ([29], [36]), and in general, they describe how
well can be approximated boundary points by parabolic ones ([35]).
From the dynamical point of view, these excursions are now responsible for the non-
uniform hyperbolicity of the geodesic flow, and it is therefore unclear which stochastic
properties still hold. In this paper, we shall study the winding process around a cusp
C of the manifold. More precisely, we fix a 1-form ω supported and closed on a
neighborhood of C. For a vector v in the unit tangent bundle T 1M of M , denote by
[v0, vt] the geodesic path of length t on the geodesic starting at v. We get an additive
functional of the geodesic flow by considering the process

Yt(v) =
∫

[v0,vt]

ω

and we are interested in the stochastic behavior of (Yt) with respect to some invariant
measure m of the geodesic flow. In particular, we shall say that (Yt,m) satisfies a
limit theorem with renormalising factor d(t) if there exists a probability measure π on
IR such that for every real number a

m{v ∈ T 1M ;
1
d(t)

Yt(v) ≥ a } converges to π(a,+∞) as t→∞.

One gets the classical Central Limit Theorem when d(t) =
√
t and π is the Gauss

distribution. Otherwise, one looks either for d(t) =
√
t log t and π the Gauss distri-

bution, or for d(t) of the form t1/α for some α ∈]0, 2[, and π a stable law of index
α.
For finite volume hyperbolic manifolds, the process (Yt) is known to satisfy a limit
theorem with respect to the Liouville measure m. The case of the modular surface
M = IH2/SL(2, ZZ) has been worked out by Y. Guivarc’h and Y. Le Jan ([18]) : the
winding of a typical geodesic satisfies a limit theorem with renormalisation factor t
and a Cauchy limit law (α = 1 in this case). Further works rely on the comparaison
between Brownian paths and geodesics, a method introduced by Le Jan ([25]). This
was used by Enriquez & Le Jan to extend the previous result to any hyperbolic
surface ([12]) and by Franchi for 3-dimensional manifolds ( [14]) ; in this last case, the
normalising factor becomes

√
t log t, with a normal limit law. In higher dimension,

the Central Limit Theorem holds since in this case the form ω is square integrable
with respect to the Liouville measure.
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For hyperbolic manifolds with infinite volume, the asymptotic behavior of (Yt) is
still quite open. In this context, the natural probability measure to look at is the
Patterson-Sullivan measure m on T 1M when it is finite, since in this case it is the
unique measure of maximal entropy ; in particular, it gives 0-measure to the wandering
set of the geodesic flow, and coincides with the Liouville measure when M has finite
volume. Let us call a cusp neutral if (Yt,m) satisfies the Central Limit Theorem, and
influential if (Yt,m) satisfies a limit theorem with renormalising factor d(t) >>

√
t

as t → +∞. From the series of work mentioned above, we see that for finite volume
manifolds, all cusps are influential in dimension 2 and 3, and become neutral in higher
dimension.
Our main observation here will be that this dichotomy on the dimension does not
hold anymore for general hyperbolic manifolds. For a specific class of manifolds, we
discover that the main role is played by the rank of the cusp C, that is the rank of a
maximal free abelian subgroup contained in its fundamental group P = π1(C).
Our main result concerns a restrictive class of Kleinian groups. Let us first introduce
a definition: we say that finitely many Kleinian groups Γ1, . . . ,ΓL are in Schottky
position if there exist non-empty disjoint closed sets F1, . . . , FL in the boundary Sn−1

of IH such that Γ∗i (Sn−1 − Fi) ⊂ Fi for any i ∈ {1, . . . , L} (where the notation Γ∗i
stands for Γi − {Id}). The group Γ generated by P and G is called the Schottky
product of P and G, and P is called a Schottky factor of Γ.
We will say that a Schottky product group Γ satisfies the critical gap hypothesis if
its Poincaré exponant δ is strictly greater than the one of each subgroup Γi. For
such a group Γ, the Patterson Sullivan measure m on T 1(IHn/Γ) is finite ([30]), and
it is the unique measure of maximal entropy for the geodesic flow restricted to its
non wandering set ([27]) ; it will thus be the initial distribution for the processes
we will consider since, roughly speaking, it caries most of the information about the
stochastic behavior of the geodesic flow.
Note that classical Schottky groups (see for instance [26] for a definition) are Schottky
products, with each Γi ' ZZ and that the critical gap hypothesis is automatically
satisfied in this case [3].
We can now state the
Main Theorem. Let Γ be a Schottky product of subgroups Γ1, . . . ,ΓL of Iso(IH),
satisfying the critical gap hypothesis. Assume that one of the Schottky factors of Γ is
a parabolic group P of rank k and denote by C the cusp of IH/Γ associated with P .
Let m be the Patterson-Sullivan measure on T 1(IH/Γ).
For a closed 1-form ω supported on a neighbourhood of C, the corresponding process
(Yt,m) satisfies a limit theorem. The renormalising factor and the limit law depend
on the values of the parameter α := 2δ − k as follows:

If α < 2 d(t) = t1/α and the limit law is a stable law of index α

If α = 2 d(t) =
√
t log t and the limit law is a normal law

If α > 2 d(t) =
√
t and the limit law is a normal law.

Thus, we see that a cusp becomes influential if its rank is sufficiently big with respect
to the Hausdorff dimension of the limit set (k ≥ 2δ− 2). It should be noted that this
condition extends the previous dichotomy for finite volume manifolds. Indeed, in this
case, all cusps have maximal rank k = n − 1 and the limit set is the whole sphere
Sn−1; thus, writing n− 1 ≥ 2(n− 1)− 2, we recover the previous condition n ≤ 3.
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Observe that if k̄ is the maximal rank of the cusps in M , only cusps of rank k̄ and
k̄ − 1 may become influential since, by Beardon’s result [3], one knows that δ always
satisfies the inequality 2δ > k̄.
We believe that this result might be true in particular for all hyperbolic manifolds
whose Patterson-Sullivan measure is finite and in particular for all geometrically finite
manifolds; this is partly confirmed by a recent result of Enriquez, Franchi & Le Jan
who study the case of a manifold with a cusp of rank n − 1 under the additional
assumption that 2δ − (n− 1) > 1 ([13]).
To prove the Main Theorem, we first have to establish a classical Central Limit
Therorem for this class of manifolds. This result can be stated in fact in the case of
variable pinched curvature, we have the :
Theorem III-5-Let X be a Hadamard manifold of pinched strictly negative curvature
and Γ = Γ1 ∗ · · · ∗ ΓL be a Schottky product of Kleinian groups acting on X and
satisfying the critical gap hypothesis. Let M = X/Γ be the quotient manifold and m
the Patterson-Sullivan probability measure on T 1M .
For any bounded and Hölder function Φ : T 1M → IR, the quantity∫

T 1M

1
t

(∫ t

0

(Φ(gsv)−m(Φ))ds
)2

m(dv)

converges to a constant σ2
Φ. One has σ2

Φ = 0 if and only if Φ is a coboundary, i-e if
Φ is the derivate in the direction of the flow of some Borel function defined on T 1M .

When σ2
Φ 6= 0, the process Xt(v) =

∫ t

0

Φ(gsv)ds satisfies the Central Limit Theorem

: for any a ∈ IR

m
{
v :

Xt(v)− tm(Φ)
σΦ

√
t

> a
}

→ π([a,+∞[)

when t→ +∞, where π is a standard Gaussian law N (0, 1) on IR.
When σ2

Φ = 0, the process
(
(Xt − tm(Φ))/

√
t
)

t
tends to 0 in probability.

This theorem extends many previous results ; let us cite for instance ([34]) (without
the precise normalisation in

√
t), ([31]) (for compact manifolds in the variable curva-

ture case), ([25]) ( for hyperbolic manifolds of finite volume) and more recently ([7])
(with a martingale argument which can be applied in weakly hyperbolic situations
([24])). Let us emphasize that the above simple expression of the asymptotic variance
σ2

Φ is obtained in a very elegant way in ([7]); nevertheless, the proof given here sim-
plifies Ratner’s argument and does not require any speed of mixing of the geodesic
flow, as in ([7]).
We can extend the Main Theorem in some others directions. First, one can fix a
family {ω1, . . . , ωκ} of 1-forms with support on a neighborhood of C which represents
a basis of H1(C; IR). Note that the homological rank κ of the parabolic group P may
be smaller than its rank k if P is not abelian. We get therefore a multi-dimensional
process Yt = (Y 1

t , ..., Y
κ
t ) as above. This process has a limiting behavior and that the

limit law is κ-dimensional stable, or Gaussian according to α < 2 or α ≥ 2.
We shall also see that the processes Xt and Yt becomes asymptotically independent
when the cusp C is influential, i-e α < 2. An extension of this property is the follow-
ing : one might consider all the cusps C1, . . . Cp of the manifold simultaneously, and
prove that the different processes built over the different cusps become asymptotically
independent under m.
Our approach to this problem, like in the original papers by M. Ratner ([31]) and
Y.Guivarc’h & Y. Le Jan ([18]), goes through a representation of the geodesic flow
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as a special flow over a dynamical system (Λ, T ) with a ceiling function l (see for
instance ([2]) for a very close set-up). The map T , called sometime the Nielsen map,
is expanding on the subset Λ of the limit set of Γ which allows us to use transfer
operator methods. The first main difficulty here is that the alphabet we use is not
finite, but countable. Thus, our transformation T can be thought as a distant cousin
of the Gauss map which appears in the coding of the geodesic flow on the modular
surface via continued fraction expansions ([1], [6], [33]). Another difficulty relies on
the fact that the ceiling function is unbounded ; the approximation of the processes
Xt and Yt and the expression of the variance in term of the geodesic flow is thus
technically much more difficult than in the original work of M. Ratner.

II Schottky products and their limit sets

When Γ is a classical Schottky group generated by hyperbolic isometries, Bowen’s
important work ([5]) leads to a symbolic model for the geodesic flow on the (infinite
volume) hyperbolic manifold M with fundamental group Γ. This flow is bi-Lipschitz
equivalent to a special flow over a subshift of finite type, whose expanding factor is
conjugated with a geometric map T on the limit set of Γ: the Nielsen map. Thus,
it was possible to study the flow using symbolic dynamics and thermodynamical
formalism ([23],[28]). When the group Γ is a Schottky group containing parabolic
transformations, and therefore when the manifold M has cusps, this construction
can be extended almost verbatim, but presents two major problems: the equivalence
between the Nielsen map T and the symbolic shift is neither onto, nor Lipschitz, and
the map T is no longer strictly expanding. Hence, the methods of symbolic dynamics
could not be applied directly. After Series’work ([33]), a construction was proposed
in ([10]) which lead to a coding (up to a set of 0-measure for the relevant measure),
of the geodesic flow as a suspension over a subshift with countable alphabet. This
construction was applied to count closed geodesics ([2], [10]).
This section is devoted to an extension of the previous construction in the variable
curvature case. After fixing some notation, we consider what we call the “Schottky
product” of simpler groups Γi. If one assumes that the critical gap hypothesis holds
(which occurs in particular when the groups Γi are divergent ([30])), then the resulting
group Γ is also divergent, and “most” of the limit set of Γ is bi-Lipschitz equivalent
with a subshift of finite type in the symbolic space Σ = AZZ with countable alphabet
A = ∪Γ?

i . This construction will be used in the next section to code the geodesic flow
on T 1M .

II-a Notation

We refer to ([4]) and ([22]) for the differents tools which are explained here and for
further references. Let X be a Hadamard manifold of pinched negative curvature K ≤
−1 endowed with a distance d. Its boundary at infinity ∂X is the set of equivalence
classes of asymptotic geodesic rays. For a boundary point x and two points x,y in X,
the limit Bx(x,y) of d(x, z) − d(y, z) as z goes to x is called the Busemann cocycle
; it represents the algebraic distance between the two horospheres centered at x and
passing through x and y respectively. If x, y ∈ ∂X and o is a fixed ”origin” in X, the
”Gromov product” of x and y seen from o is defined by

(x|y)o =
1
2

(
Bx(o, z) +By(o, z)

)
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and does not depend on the point z on the geodesic (xy) ; the curvature being bounded
from above by −1, the quantity exp(−(x|y)o) is a distance on ∂X, it coincides with
the Euclidean distance on Sn−1 when X is the n-dimensional hyperbolic space, and
will thus be denoted by |x− y|.
The group Iso(X) of orientation-preserving isometries of X acts continuously on ∂X
by conformal transformations. The conformal factor of an isometry γ at the point
x ∈ ∂X is given by the formula |γ′(x)| = e−Bx(γ−1.o,o). In particular, the function
b(γ, x) := − log |γ′(x)| = Bx(γ−1.o,o) satisfies the cocycle relation: b(γ1γ2, x) =
b(γ1, γ2.x) + b(γ2, x)

Notation- If E is a subset of the boundary, E
∆

×E denotes the complement of the
diagonal in E × E.
For a unit vector v in the unit tangent bundle of the space X, let vt be the point at
distance t on the geodesic starting at v. Hence, v0 is the base point of v, whereas
v−∞ and v+∞ are the endpoints on the boundary of the geodesic. Associating to a
vector v the triplet (v−∞, v+∞, r) where r = Bv+∞(v0,o) gives an identification of

T 1X with the set ∂X
∆

×∂X× IR. With these coordinates, the geodesic flow (g̃t) of the
hyperbolic space acts by g̃t(y, x, r) = (y, x, r − t).
The action of an isometry γ on T 1X in these coordinates is given by

γ.(y, x, r) = (γ.y, γ.x, r − b(γ, x)). (1)

A Kleinian group Γ is a discrete torsion free subgroup of Iso(X). The limit set Λ(Γ)
is the smallest Γ-invariant closed subset of X̄ = X ∪ ∂X. It is also the closure in
the boundary of the set of fixed points of Γ − {Id} and can be obtained as the set
of accumulation points in X̄ of any Γ–orbit. A point x in Λ(Γ) is called radial if the
geodesic ray [ox] stays at a bounded distance of the orbit Γ.o. For instance, fixed
points of hyperbolic isometries of Γ belong to the radial limit set whereas parabolic
points , i.e. fixed points of parabolic isometries of Γ, do not. A parabolic point
x ∈ Λ(Γ) is said to be bounded if its stabilizer in Γ acts on Λ(Γ)− {x} with compact
fundamental domain.
A conformal measure of dimension α ≥ 0 for Γ is a family σ = (σx)x∈X of finite
measures supported on the limit set of Γ and such that, for any x,x′ ∈ X and any
γ ∈ Γ, one has

d(γ∗σx′)
dσx

(x) = e−αBx(x′,x) and γ∗σx = σγ.x

(where γ∗σ(A) = σ(γA) for any Borel subset of ∂X).
By a result of Patterson ([29]), there always exists a conformal measure of dimension
δ, where δ is the critical exponent of Γ, that is the critical exponent of the Poincaré
series of Γ

PΓ(s) =
∑
γ∈Γ

e−sd(o,γ.o).

In this paper, we shall mainly consider divergent Kleinian groups i.e groups for which
PΓ diverges at s = δ . In this case, there exists a unique conformal measure for Γ of
dimension δ. It gives full measure to the radial limit set and is called the Patterson
measure of Γ.
Quotienting the space X by Γ leads to a negatively curved manifold M = X/Γ, whose
unit tangent bundle is T 1M = T 1X/Γ. Since the geodesic flow (g̃t) commutes with
the action of Γ on T 1Xn, it induces on T 1M the geodesic flow (gt) of M . The
non-wandering set Ω of (gt) identifies with the projection on T 1M of the Γ- invariant

subset Ω̃ := Λ(Γ)
∆

×Λ(Γ)× IR of T 1X ([11]).
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As observed by Sullivan ([36]), the Patterson measure of Γ can be used to construct
an invariant measure for the geodesic flow with support Ω. The measure m̃ on Ω̃
given by

dm̃(y, x, t) =
dσ(y)dσ(x)
|y − x|2δ

dt

is clearly (g̃t) invariant, but it is also Γ-invariant according to the “mean value relation
” ([36]) :

|γ.y − γ.x|2 = |γ′(y)| |γ′(x)| |y − x|2. (2)

Hence, it induces on Ω an invariant measure m that we call the Patterson-Sullivan
measure.

II-b Schottky products.

In this subsection, we introduce Schottky products and give their main properties.
These Schottky products will be typical examples of groups satisfying the following
property :
Property C : There exist a closed and proper subset F in the boundary of the
hyperbolic space such that any element of Γ different from the identity maps ∂X − F
into F .
We now consider a group Γ satisfying Property C. We have the two following facts :
Fact 1- The group Γ is discrete and its limit set is contained in F .
Fact 2 - For any compact set K of the boundary and disjoint from F , there exists
C > 0 such that, for any x ∈ K and γ ∈ Γ one has

d(o, γ.o)− C ≤ Bx(γ.o,o) ≤ d(o, γ.o)

Proof of Fact 1- If Γ was not discrete, one would get in Γ a sequence of elements
acting on ∂X and converging to the identity so that any point outside F would be
the limit of a sequence of points in F . That the limit set of Γ is contained in F follows
from the fact that fixed points of isometries in Γ∗ = Γ− {Id} belong to F .
Proof of Fact 2 -To check this, recall that the orbit Γ.o accumulates in F . Thus, if
x ∈ X is close to K, the angle at o of the triangle (γ.o,o,x) is bounded away from
0 ; Fact 2 now follows from an argument of comparation of triangles and a classical
fact in hyperbolic geometry.
We can now state the definition of a Schottky product :

Definition II.1 Let Γi, i = 1, . . . L, be a family of torsion-free subgroups of Iso(X).
These groups are said to be in a Schottky position if there exist disjoint closed sets Fi

in ∂X such that
Γ∗i (∂X − Fi) ⊂ Fi

The group Γ generated by the groups Γi is called the Schottky product of the Γi’s and
denoted Γ = Γ1 ∗ Γ2 ∗ · · · ∗ ΓL or else by Γ = ∗i Γi.

Since any element in Γ∗ maps the complement of the closed set F = ∪Fi into F , the
group Γ is discrete by Fact 1. Moreover, by the Klein’s tennis table criteria, it is
the free product of the groups Γi : any element in Γ can be uniquely written as the
product

γ = a1 . . . ak

for some aj ∈ ∪Γ∗i with the property that no two consecutive elements aj belong to
the same group. The set A = ∪Γ∗i is called the alphabet of Γ, and a1, . . . , ak the
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letters of γ. The number k of letters is the symbolic length of γ. The last letter of γ
will play a special role, and the index of the group it belongs to will be denoted by
i(γ). Applying Fact 2 one gets
Fact 3 - There exists a constant C > 0 such that

d(o, γ.o)− C ≤ Bx(γ−1.o,o) ≤ d(o, γ.o)

for any γ ∈ Γ = ∗i Γi and any x ∈ ∪i 6=i(γ)Fi.
This fact implies in particular the following crucial contraction property:

Proposition II.2 There exist a real number r ∈]0, 1[ and C > 0 such that for any
γ with symbolic length n ≥ 1 and any x belonging to the closed set ∪i 6=i(γ)Fi one has

|γ′(x)| ≤ Crn

Proof- Recall that the conformal factor of γ is |γ′(x)| = e−Bx(γ−1o,o). By Fact 3
and the discreteness of Γ, we get |γ′(x)| ≤ 1/2 for all but finitely many γ ∈ Γ and all
x ∈ ∪i 6=i(γ)Fi ; this inequality holds in particular for any isometry γ of symbolic length
≥ N where N is large enough. The proposition follows with C = sup{|γ′(x)|; γ ∈
Γ, x ∈ ∪i 6=i(γ)Fi} and r = 1/ N

√
2.

II-c The limit set of Γ = ∗iΓi and the Patterson measure

Let Γ be a Schottky product as above. The following proposition gives a description
of a large part of its limit set Λ(Γ) ([30]).

Proposition II.3 Denote by Σ+ the set of sequences (an)n≥0 for which each letter
an belongs to the alphabet A = ∪Γ∗i and such that no two consecutive letters belong
to the same group (these sequences are called admissible). Fix a point x0 in ∂X −F .
Then
a) For any a = (an) ∈ Σ+, the sequence a0 . . . an.x0 converges to a point π(a) in the
limit set of Γ, independent on the choice of x0.
b) The map π : Σ+ → Λ(Γ) is one-to-one and π(Σ+) is contained in the radial limit
set of Γ.
c) The complement of π(Σ+) in the limit set of Γ consists of the Γ-orbit of the union
of the limits sets Λ(Γi)

The limit sets Λ(Γi) are proper subsets of Λ(Γ) ; furthermore the critical exponent
δi of each subgroup Γi, 1 ≤ i ≤ L, is less or equal to the one of Γ since the Γi are
subgroups of Γ. Recall that Γ satisfies the critical gap property when δ > δΓi for any
i ∈ {1, . . . , L}. One has the

Theorem II.4 ([30]) Let Γi, i = 1, . . . L be a finite collection of Kleinian groups in
a Schottky position. Then if Γi is divergent for any i = 1, . . . , L, the group Γ = ∗iΓi

is also divergent. Moreover
- δ > max

i
δΓi

- the Patterson measure of Γ gives measure 0 to the limit sets Λ(Γi)
- the Patterson-Sullivan measure is finite.

Remarks - a) If the groups Γi are elementary Kleinian groups, their limit sets is
reduced to one point or two points, and the above result shows that σ has no atoms.
b) The conclusions of this theorem still hold when one only assume that one of the
groups Γi of maximal exponent is divergent ([30]).
c) If the groups Γi are geometrically finite, it can be checked that the product is also
geometrically finite ([26]).
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III Symbolic dynamics and stochastic behavior of

the geodesic flow

From now on, we consider a Schottky product group Γ. Thus, up to a set of measure
0, the limit set of Γ coincides with Λ := π(Σ+). Let Λi be the subset of Λ of those
limit points with first letter in Γi (not to be confused with the limit set of Γi). The
following description of Λ will be useful:

a) Λ is the finite union of the sets Λi, with disjoint closures Λ(Γ) ∩ Fi.
b) Each of these sets is partitioned into a countable number of subsets with disjoint

closures :
Λi = ∪a∈Γ∗

i
∪j 6=i a.Λj .

III-a Coding the geodesic flow

In this set-up, the non-wandering set Ω of the geodesic flow contains Ω′ = Λ
∆

×Λ×IR/Γ
as a subset of full measure with respect to the Patterson-Sullivan measure, and we
can therefore restrict (gt) to Ω′. We shall now produce a coding of the geodesic flow

on Ω′ by first conjugating the action of Γ on Λ
∆

×Λ × IR with the action of a single
transformation. Observe that the subset Λ̄ = ∪i 6=jΛi × Λj of Λ

∆

×Λ is in a one-to-one
correspondence with the symbolic space Σ of bi-infinite admissible sequences in AZZ ,
and that the shift of Σ induces a transformation T̄ on this set Λ̄ given by

T̄ (y, x) = (a−1
0 y, a−1

0 x) if x = π(a)

Lemma III.1 The action of Γ on Λ
∆

×Λ is orbit equivalent with the action of T̄ on
Λ̄.

Proof- Let x = π(a) and y = π(b) two distinct points in Λ, and denote by n the first
index for which an 6= bn. Let γ = a0 . . . an−1 = b0 . . . bn−1. Then, γ−1(y, x) belongs
to Λ̄. Therefore, the Γ-orbit of (y, x) meets Λ̄ which means that Λ̄ is a section for
the action of Γ. Furthermore, when (y, x) belongs to π(Σ), it is easily checked that
γ(y, x) ∈ Λ̄ if and only if γ = (a0 . . . ak−1)−1 or γ = b0 . . . bk−1 for some k ≥ 0. In
the first case, γ(y, x) = T̄ k(y, x), and in the second case, γ(y, x) = T̄−k(y, x), which
proves the lemma.
It is now a consequence of Lemma III.1 that the action of Γ on the space Λ

∆

×Λ× IR
is orbit-equivalent with the transformation T̄l on Λ̄× IR given by

T̄l(y, x, r) = a−1
0 (y, x, r) = (T̄ (y, x), r + l(x))

where, according to (1), the function l is defined by

l(x) = −b(a−1
0 , x) = −Bx(a0o,o) when x = π(a)

It follows that the geodesic flow (gt) of M (restricted to Ω′) can be presented as the
special flow on the space Λ̄ × IR/T̄l. When the function l is non negative on Λ, the
set

Dl = {(y, x, s); (y, x) ∈ Λ̄, s ∈ [0, l(x)[ }

is a fundamental domain for the action of T̄l on Λ̄ × IR. In the general case one
only knows by Fact 3 in the previous section that l is bounded from below and
SN l = l+ l ◦ T + · · · l ◦ TN−1 is non negative on Λ for some N ≥ 1 ; the function l is
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thus cohomologous to a strictly positive function l+ (e.g. l = l+ + h− h ◦ T for some
measurable function h) and the set {(y, x, s); (y, x) ∈ Λ̄, h(x) ≤ s < h(x) + l+(x)} is
a fundamental domain for the action of T̄l on Λ̄× IR.
In order to simplify the notation, we will assume in the sequel that l is non
negative on Λ and identifies Λ̄× IR/T̄l with Dl defined above.

Note that restricting the measure
dσ(y)dσ(x)
|y − x|2δ

to Λ̄ and normalising it gives an invari-

ant probability measure for T̄ , that we shall denote by ν̄. The measure ν̄(dydx)dt on
Λ̄× IR is thus T̄l-invariant, it induces an invariant measure for the special flow on the
space Λ̄× IR/T̄l which corresponds with the Patterson-Sullivan measure on Ω.

III-b The factor (Λ, T, ν).

We have constructed a dynamical system (Λ̄, T̄ , ν̄), isomorphic to a symbolic space of
bi-infinite sequences such that the geodesic flow restricted to Ω′ is a suspension of it.
By using the projection p : Λ̄ → Λ on the second coordinate, we get a factor (Λ, T, ν)
of the dynamical system (Λ̄, T̄ , ν̄) that we now describe.
The transformation T is induced by the unilateral shift and is simply given by

Tx = a−1
0 .x if x = π(a).

This transformation is uniformly expanding by Proposition II.2.
The probability measure ν = ν̄ ◦ p−1 on Λ is invariant for T and has a density h with
respect to the Patterson measure σ on Λ given up to a normalization constant by the
formula:

for x ∈ Λi h(x) =
∫
∪j 6=iΛj

dσ(y)
|x− y|2δ

.

III-c The transfer operator

Classically, the stochastic behavior of a special flow over a subshift of finite type
(Σ, σ) with ceiling function l is studied using the factor system (Σ+, σ+) of one-sided
sequences and the family of transfer operators (Lz)z defined by

Lzϕ(x) =
∑

σy=x

e−zl(y)ϕ(y).

In this section, we study the family of transfer operators associated with the dynamical
system (Λ, T, ν) and the ceiling function l defined above, taking into account that our
alphabet is countable ; these operators Lz will be defined formally by

for any function ϕ from Λ to C Lzϕ(x) =
∑

Ty=x

e−zf(y)ϕ(y).

If x belongs to Λi, its pre-images by T are the points y = a.x for a ∈ ∪j 6=iΓ∗j and
then l(y) = −b(a−1, a.x) = b(a, x); one may then set

if x ∈ Λi, Lzϕ(x) =
∑
i 6=j

∑
a∈Γ∗

j

1x∈Λi
e−zb(a,x)ϕ(ax).

Assume that ϕ is bounded. By Fact 3, the series above converges as soon as <(z) is
strictly greater than the critical exponent of each group Γi, 1 ≤ i ≤ l ; this occurs in
particular if z = δ in our set-up by the critical gap property given in Theorem II.4.
According to the next proposition, the operator Lδ can be seen as a dual operator of
the transformation T acting on L∞(Λ(Γ)) endowed with the Patterson measure σ.
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Proposition III.2 For any φ and ψ in L∞(Λ(Γ)), one has∫
Λ

ϕ(x)ψ(Tx)σ(dx) =
∫

Λ

Lδϕ(x)ψ(x)σ(dx) (3)

In particular, the Patterson measure σ is an invariant measure for Lδ and the density
h defined in section III.b is an invariant function : σLδ = σ and Lδh = h.

Proof- Recall from Section 3 that Λ coincides with Λ(Γ) up to a subset of Patterson’s
measure 0 and can be partitioned into a countable number of subsets with disjoint
closures

Λ = ∪i 6=j ∪a∈Γ∗
j
aΛi.

The restriction of the transformation T on aΛi is the action of a−1 ; the δ-conformality
of the Patterson’s measure σ thus implies that, for any ϕ,ψ ∈ L∞(Λ(Γ)),∫

Λ(Γ)

ϕ(x)ψ(Tx)σ(dx) =
∑
i 6=j

∑
a∈Γ∗

j

∫
aΛi

ϕ(x)ψ(Tx)σ(dx)

=
∑
i 6=j

∑
a∈Γ∗

j

∫
Λi

ϕ(a.x)ψ(x)|a′(x)|δσ(dx).

Recalling that |a′(x)| = e−b(a,x), we get (3). For ψ = 1Λ(Γ) one obtains in particular
σLδ = σ. Furthermore since ν = hσ is T -invariant one gets Lδh = h.
In order to control more precisely the spectrum of the transfer operators, we will
study their restriction the space Lα = Lα(Λ(Γ)) of Hölder continuous functions from
Λ(Γ) to C defined by

Lα = {ϕ ∈ C(Λ(Γ)); ‖ϕ‖α = |ϕ|∞ + [ϕ]α < +∞}

where [ϕ]α is the α-Hölder coefficient of ϕ defined by

[ϕ]α = sup
i

sup
x,y∈Λ̄i
x6=y

|ϕ(x)− ϕ(y)|
|x− y|α

( the set Λ̄i denotes here the set Λ(Γ) ∩ Fi, that is the closure of Λi). The space
(Lα, ‖.‖α) is a Banach space and by Ascoli’s theorem the identity map from (Lα, ‖.‖α)
into (C(Λ(Γ)), |.|∞) is compact.
For any z ∈ C and γ in Γ∗, let wz(γ, .) be the weight function defined on Λ(Γ) by

wz(γ, x) = 0 if x ∈ Λ̄i(γ)

= e−zb(γ,x) if x ∈ Λ̄i, i 6= i(γ).

Observe that these weights satisfy the following cocycle relation : if a1, a2 ∈ A do not
belong to the same group Γi, then

wz(a1a2, x) = wz(a1, a2.x)wz(a2, x). (4)

Lemma III.3 Each weight wz(γ, .) belongs to Lα for any 0 < α ≤ 1. Moreover, for
any z ∈ C there exists C = C(z) > 0 such that for any γ in Γ∗,

‖wz(γ, .)‖α ≤ Ce−<(z)d(o,γ.o)
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Proof- Fact 3 implies that the family {e<(z)d(o,γ.o)wz(γ, .), γ ∈ Γ} is bounded for
| · |∞. The control of the Lipschitz-coefficient of wz(γ, .) is more delicate, we first
recall briefly the proof in the constant curvature case. To estimate wz(γ, x)−wz(γ, y)
for any points x, y belonging to the same subset Λi with i 6= i(γ), note that there
exists a constant A > 0 such that |b(γ, x) − b(γ, y)| ≤ A|x − y|. The inequality
|eZ − 1| ≤ 2|Z|e|<(Z)| readily implies

|e−zb(γ,x) − e−zb(γ,y)| ≤ A|z|e2A|<(z)|−<(z)b(γ,x)|x− y|.

So, the Hölder coefficient of wz(γ, .) satisfies [wz(γ, .)]α ≤ Ce−<(z)d(o,γ.o) for some
constant C = C(z). In the variable curvature case, we same argument holds using
the following fact which extends a result due to M. Bourdon ([4]).
Fact 4- Let E ⊂ ∂X and F ⊂ X two sets whose closure E and F in X ∪ ∂X are
disjoint. Then the functions x 7→ Bx(o,p), with p ∈ F , are equi-Lipschitz continuous
on E with respect to |.|.
Proof- For any points p ∈ X and x, y ∈ ∂X, the quantity (x|y)p = 1

2

(
Bx(p,q) + By(p,q)

)
does not depend on the point q on the geodesic (xy) ; furthermore the function ∆p

defined by ∆p(x, x) = 0 and ∆p(x, y) = exp
(
−(x|y)p

)
for x 6= y is a distance on ∂X

which satisfies the well known visibility property :
there exists C > 0, such that, for any couple (x, y) of distinc points in ∂X

1
C

exp
(
−d(p, (xy)

)
≤ ∆p(x, y) ≤ C exp

(
−d(p, (xy)

)
.

Note that the distance ∆o(x, y) is nothing else than the distance |x − y| introduced
above ; furthermore, the constant C is a universal constant which depends only on the
dimension of X and the upper bound on the curvature ([16]). The distances ∆p,p ∈

X, are equivalent on ∂X since ∆p(x, y) = ∆o(x, y) exp
(Bx(o,p) + By(o,p)

2

)
. This

readily implies

Bx(o,p) = −2 log ∆o(x, y) + +2 log ∆p(x, y)− By(o,p).

We will use the two following properties, whose proof is developed a bit latter :
i) There exists ε > 0 such that for any p ∈ F one can choose xp ∈ ∂X such that

∆o(xp, E) ≥ ε and ∆p(xp, E) ≥ ε.

ii) The set {d(p, (xx′))− d(o, (xx′))} is bounded from below, uniformly in p ∈ F
and x, x′ ∈ E, x 6= x′.
Fix p in F . The quantity Bxp(o,p) does not depend on x. On the other hand, the
function x 7→ ∆o(x, xp) is Lipschitz continuous ( with coefficient 1) with respect to ∆o

; since it is bounded from below by ε, the function x 7→ log ∆o(x, xp) is also Lipschitz
continuous with respect to ∆o and its Lipschitz coefficient is uniformly bounded in p.
In the same way, the function x 7→ log ∆p(x, xp) is Lipschitz continuous with respect
to ∆p, with a Lipschitz coefficient uniformly bounded in p. Fact 4 will be proved
if one shows that ∆p(x, x′) ≤ C∆o(x, x′) for some constant C > 0 which does not
depend on p ∈ F ; this is the property ii).
It remains to prove the two assertions i) and ii).
Proof of i) - If F is relatively compact in X, one fixes x0 in ∂X outside E and one
set xp = x0 for any p ∈ F . In the sequel we will assume that F is not bounded in X,
we set ε0 = ∆o(E,F ∩ ∂X)/2 > 0 and we choose a compact subset K0 of ∂X such
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that, if x, y are two distinct points in ∂X with ∆o(x, y) ≥ ε0 then the geodesic (xy)
meets the set K0. Fix e0 ∈ E and x0 ∈ ∂X with ∆o(x0, E) ≥ ε0. When p ∈ F lies
inside K0 set xp = x0 ; otherwise let xp be the point in ∂X such that the geodesic
(e0xp) contains p. One can enlarge K0 in such a way that ∆o(xp, E) ≥ ε0 as soon as
p /∈ K0 .

- if p ∈ K0, one has xp = x0 and so ∆o(xp, E) ≥ ε0; it follows that, for any e ∈ E,
the geodesic (exp) cuts the set K0 and so d(p, (exp)) ≤ diam(K0).

- if p /∈ K0, one has ∆o(xp, E) ≥ ε0 and for any e ∈ E, one can thus choose a
point qe on the geodesic (xpe) which belongs to K0 . In particular the point p is on
the geodesic ray [qe0 , xp), which readily implies

d(p, (exp)) ≤ d(qe0qe) ≤ 2 diam(K0).

In the two cases, one concludes with the visibility property.
Proof of ii)- Assume that there exists sequences (pn) in F and (xn), (x′n) in E,
with xn 6= x′n, such that d(pn, (xnx

′
n)) − d(o, (xnx

′
n)) → −∞ as n → +∞. Let qn

be the point on the geodesic (xnx
′
n) such that d(pn, (xnx

′
n)) = d(pn,qn); one has

d(pn,qn)−d(o,qn) → −∞. Taking if necessary a subsequence, one may assume that
(pn)n and (qn)n converge respectively to some points p and q. Since d(pn,qn) −
d(o,qn) → −∞, one has d(o,qn) → +∞ and so p ∈ E ; one also has d(o,pn) → +∞
because |d(pn,qn)− d(o,qn)| ≤ d(o,pn), which implies that q ∈ F ∩ ∂X. The angle
at o in the triangle (o p q) is bounded from below by θ0 > 0 ; for n large enough
the angle between the two geodesic segments [o,pn] and [o,qn] is thus ≥ θ0/2 which
implies that d(pn,qn)− d(o,pn)− d(o,qn) is bounded from below. This contradicts
the fact that d(pn,qn)− d(o,qn) tends to −∞.
Lemma III-3 thus proves that Lz is bounded on Lα when <(z) > δi for all 1 ≤ i ≤ L
and in particular for z = δ by the critical gap property. The following proposition
gives a precise description of the spectrum of Lδ on Lα.

Proposition III.4 For any 0 < α ≤ 1, the spectral radius of Lδ on Lα is equal to
1. Furthermore

– if L ≥ 3, the eigenvalue 1 is simple and the rest of the spectrum of Lδ is contained
in a disc of radius strictly less than 1.

– if L = 2 (i.e. if Γ = Γ1 ∗ Γ2), the function h(1Λ̄1
− 1Λ̄2

) is an eigenfunction of
Lδ for the value −1, the eigenvalues 1 and −1 are simple and the rest of the spectrum
of Lδ is contained in a disc of radius strictly less than 1

Proof- The study of the spectrum of Lz was already done in ([10]) and ([2]) when the
Schottky factors of Γ are elementary subgroups of Iso(IHn). The proof in this more
general case is similar, and we recall it for the sake of completeness. It is decomposed
into 4 steps.
Step 1.— The essential spectral radius of Lz. We first obtain a contraction property
for the iterated operators Lk

z . Due to the cocycle property (4) of the weights, we may
write

Lk
zϕ(x) =

∑
γ∈Γ(k)

wz(γ, x)ϕ(γ.x)

where Γ(k) is the set of elements of symbolic length k in Γ. Therefore

|Lk
zϕ(x)−Lk

zϕ(y)| ≤
∑

γ∈Γ(k)

|wz(γ, x)| |ϕ(γ.x)−ϕ(γ.y)|+
∑

γ∈Γ(k)

[wz(γ, .)]α |ϕ|∞|x−y|α.
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By Proposition II.2 and the mean value relation (2), there exist C > 0 and r < 1
such that |γ.x − γ.y| ≤ Crk|x − y| whenever x, y ∈ Λi, i 6= i(γ). This leads to the
inequality

[Lk
zϕ]α ≤ rk[ϕ]α +Rk|ϕ|∞ (5)

where rk =
(
Crk

)α

|Lk
<(z)1|∞ and Rk =

∑
γ∈Γ(k)[wz(γ, .)]α. Observe that

lim sup
k

r
1/k
k = rα lim sup

k
|Lk
<(z)1|

1/k
∞ = rαρ∞(<(z))

where ρ∞(<(z)) is the spectral radius of the positive operator L<(z) on C(Λ(Γ)).
The inequality (5) is crucial in the Ionescu-Tulcea-Marinescu theorem for quasi-
compact operators and appeared first in ([8]). By Hennion’s work [20], it implies
that the essential spectral radius of Lz on Lα is less than rαρ∞(<(z)) ; in other
words any spectral value of Lz with modulus strictly larger than rαρ∞(<(z)) is an
eigenvalue with finite multiplicity and isolated in the spectrum of Lz.
It follows in particular that the spectral radius of Lz on Lα is less than ρ∞(<(z)).
Otherwise there would exist a spectral value λ of modulus bigger than ρ∞(<(z))
which would be an eigenvalue by the previous result ; if ϕ ∈ Lα was a corresponding
eigenfunction, one would thus obtain |λ||ϕ| ≤ L<(z)|ϕ| and so |λ| ≤ ρ∞(<(z)), a
contradiction.

Step 2.— The peripherical spectrum of Lδ.
Recall from Proposition III.2 that Lδh = h, and that h belongs to C(Λ(Γ)). Since
h is strictly greater than 0 on Λ(Γ), the spectral radius on C(Λ(Γ)) of the positive
operator Lδ is ρ∞(Lδ) = lim sup+∞ |Lk

δ1|1/k
∞ = 1.

By the first step it follows that the spectral radius of Lδ in Lα is less that 1, and
since h belongs to Lα, is equal to 1. Moreover, we know that, except for finitely many
eigenvalues of modulus 1, the spectrum of Lδ is included in a disc of radius < 1. We
now describe the peripherical spectrum of Lδ.
Assume first that L ≥ 3 and let us consider a function ϕ ∈ Lα such that Lδϕ = eiθϕ for
some θ ∈ IR. It follows that |ϕ| ≤ Lδ|ϕ| and so |ϕ(x)| = Lδ|ϕ|(x) σ(dx)− a.s. since
σLδ = σ. The equality holds in fact for all x ∈ Λ(Γ) since |ϕ| and Lδ|ϕ| are continuous

and the support of σ is Λ(Γ). Now, let x0 ∈ Λ(Γ) such that
|ϕ(x0)|
h(x0)

= sup
x∈Λ(Γ)

|ϕ(x)|
h(x)

and denote by i0 the index such that x0 belongs to the closure of Λi0 ; the equalities
Lδ|ϕ| = |ϕ| and Lδh = h imply by convexity

∀j 6= i0,∀a ∈ Γ∗j
|ϕ(a.x0)|
h(a.x0)

=
|ϕ(x0)|
h(x0)

.

In the same way, if x1 ∈ Λ(Γ) satisfies
|ϕ(x1)|
h(x1)

= inf
x∈Λ(Γ)

|ϕ(x)|
h(x)

and if x1 belongs to

the closure of Λi1 , one has

∀j 6= i1,∀a ∈ Γ∗j
|ϕ(a.x1)|
h(a.x1)

=
|ϕ(x1)|
h(x1)

.

Since L ≥ 3 there exists an index j which is distinct from i0 and i1. Let a ∈ Γ∗j ; the
sequences (an.x0)n≥1 and (an.x1)n≥1 converge to the attractive fixed point of a and

by continuity it follows that
|ϕ(x0)|
h(x0)

=
|ϕ(x1)|
h(x1)

; the function
|ϕ|
h

is thus constant on

Λ(Γ).
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Let us come back to the equality Lδ(ϕ) = eiθϕ ; since the modulus of
ϕ

h
is constant

on Λ(Γ) one obtains by convexity
ϕ(a.x)
h(a.x)

= eiθϕ(x)
h(x)

for any a ∈ Γ∗j and any x ∈ Λi,

i 6= j. Fix a ∈ Γ∗j ; for any pair of points x, x′ in Λ(Γ)− Λj , the sequences an.x and
an.x′ converge to the attractive fixed point of a and by continuity once again, we get

eiθϕ(x)
h(x)

= eiθϕ(x′)
h(x′)

.

The function ϕ is thus proportional to h and eiθ = 1 ; in other words, 1 is the unique
eigenfunction of Lδ with modulus 1 and the corresponding eigenspace is C .h.
When L = 2, setting Λ̄i = Λ(γ)∩Fi for i = 1, 2, one gets Lδ(h1Λ̄1

) = h1Λ̄2
, Lδ(h1Λ̄2

) =
h1Λ̄1

and the operator L2
δ acts on each space Lα(Λ̄1) and Lα(Λ̄2). If ϕ ∈ Lα satisfies

the equality Lδϕ = eiθϕ, then Lδ(ϕ1Λ̄j
) = e2iθϕ1Λ̄j

for j = 1, 2 ; the same argument
than above leads to e2iθ = 1 and ϕ1Λ̄j

= h1Λ̄j
. Consequently, either eiθ = 1 and

ϕ ∈ C .h or eiθ = −1 and ϕ ∈ C .h(1Λ̄1
−1Λ̄2

). This achieves the proof of Proposition
III.4

III-d The Central Limit Theorem for the geodesic flow

We will now use the preceding formalism to show a Central Limit Theorem for (
regular) additive functionals of the geodesic flow.

Theorem III.5 Let X be a Hadamard manifold of pinched strictly negative curva-
ture and Γ = Γ1 ∗ · · · ∗ ΓL be a Schottky product of Kleinian groups acting on X and
satisfying the critical gap hypothesis. Let M = X/Γ be the quotient manifold and m
the Patterson-Sullivan probability measure on T 1M .
For any bounded and Hölder function Φ : T 1M → IR, the quantity∫

T 1M

1
t

(∫ t

0

(Φ(gsv)−m(Φ))ds
)2

m(dv)

converges to a constant σ2
Φ. One has σ2

Φ = 0 if and only if Φ is a coboundary, i-e if
Φ is the derivate in the direction of the flow of some Borel function defined on T 1M .

When σ2
Φ 6= 0, the process Xt(v) =

∫ t

0

Φ(gsv)ds satisfies the Central Limit Theorem

: for any a ∈ IR

m
{
v :

Xt(v)− tm(Φ)
σΦ

√
t

> a
}

→ π([a,+∞[)

when t→ +∞, where π is a standard Gaussian law N (0, 1) on IR.
When σ2

Φ = 0, the process
(
(Xt − tm(Φ))/

√
t
)

t
tends to 0 in probability.

Remark- We cannot show that the CLT holds when Φ is only assumed to be in L2(m)
(and Hölder continuous). In the course of the proof, we shall see that the boundedness
condition can be relaxed up to a certain point. Analogous results in different set-ups
have been obtained by various authors. The proof given here is simpler than Ratner’s
original one ([31]), and is inspired by the works of Guivarc’h& Hardy and Guivarc’h&
Le Jan ([17], [18]).
Proof- For any vector v in the subset Ω′ of full measure in the non-wandering set
Ω, there exist a unique lift (y, x, r) of v ∈ T 1M which belongs to the domain Dl
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(see Section III.a) ; we will set v = (y, x, r). The geodesic segment {(y, x, r − s), 0 ≤
s ≤ t} will be cut into pieces, according to the values of the Birkhoff sums Snl(x) =
l(x) + l(Tx) + · · · + l(Tn−1x). For a given t, we then define the process Nt(v) by
Nt(v) = max{n ≥ 0;Snl(x) < t+r.}. When the context is clear (i.e. when t and v are
fixed) we shall often denote SNt(v)l(x) simply by SN . We shall decompose the proof
into 4 steps : in the first one, we reduce the study of the process Xt to the study
of random Birkhoff sums over the dynamical system (Λ, T, ν). The second step gives
the CLT for Birkhoff sums on this system. In the third one, we give a limit theorem
for the process Nt(v) and prove the above theorem in the non degenerated case. In
the last step, we analyse the asymptotic variance σ2

Φ. Without loss of generality, we
will assume that Φ is m- centered i.e m(Φ) = 0.
Step 1.— Reduction to the dynamical system (Λ, T, ν). We first establish the following

Proposition III.6 If t > 0, let Nt : Λ → IN be the process defined for v = (y, x, r) ∈
Dl by :

Nt(v) = max{n ≥ 0/Snl(x) ≤ r + t}.

If the function Φ is Hölder continuous on T 1M with exponent β ≤ 1, there exists a
Borel function A : T 1M → IR and a Hölder continuous function φ : Λ → IR such that
for any v = (y, x, r) ∈ Λ one has, up to a uniformly bounded term :

Yt(v) = A(vt)−A(v) +
Nt(v)−1∑

k=0

φ(T kx).

Moreover, there exists a constant C > 0 such that
i) |φ(x)| ≤ Cl(x) + C
ii) |φ(γ.x)− φ(γ.x′)| ≤ C|x− x′|β/2 for any x, x′ ∈ Λ(Γ) ∩ Fi and γ ∈ Γj , j 6= i.

Proof. Let Φ̃ be the Γ-invariant lift of Φ to T 1X. For a vector v = (y, x, r) ∈ Dl, one
has

Xt(v) =
∫ t

0

Φ̃(y, x, r − s)ds

= −
∫ r

0

Φ̃(y, x,−s)ds+
∫ SN

0

Φ̃(y, x,−s)ds+
∫ t+r

SN

Φ̃(y, x,−s)ds

Let A(v) be the function defined by A(v) =
∫ r

0
Φ̃(y, x,−s)ds. Since Φ̃ is Tl-invariant,∫ t+r

SN

Φ̃(y, x,−s)ds = A(gtv)

On the other hand, we have∫ SN

0

Φ̃(y, x,−s)ds =
Nt(v)−1∑

k=0

∫ l(T kx)

0

Φ̃(y, x,−s− Skl(x))ds

=
Nt(v)−1∑

k=0

∫ l(T kx)

0

Φ̃(T̄ l(y, x),−s)ds

=
Nt(v)−1∑

k=0

φ̄(T̄ l(y, x))
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where we have set φ̄(y, x) =
∫ l(x)

0

Φ̃(y, x, s)ds. The function φ̄ is Borel regular and

satisfies the inequality |φ̄(y, x)| ≤ ||Φ||∞l(x) by the boundedness of Φ̃ ; it is thus
integrable with respect to ν̄ on Λ̄. Moreover, since the Patterson-Sullivan measure m
on T 1M identifies with the measure ν̄ ⊗ ds on the domain D̄l, we have∫

Λ̄

φ̄(y, x) dν̄(y, x) =
∫

Λ̄l

Φ̃(y, x, s)dm(y, x, s) = 0.

One achieves the proof of Proposition III.6 using the following lemma which brings
the study to the factor system (Λ, T, ν) and relies on standard arguments (see ([5])
and also ([2], lemme 4.3) for a precise statement developed in a very close set-up) :

Lemma III.7 Assume that Φ is Hölder continuous on T 1M with exponent β. There
exists measurable functions φ : Λ → C and ψ : Λ̄ → C such that for any (y, x) ∈ Λ̄,

φ̄(y, x) = φ(x) + ψ(y, x)− ψ ◦ T̄ (y, x).

Moreover, there exists a constant C > 0 such that
i) |φ(x)| ≤ Cl(x) + C
ii) |φ(γ.x)− φ(γ.x′)| ≤ C|x− x′|β/2 for any x, x′ ∈ Λ̄(Γ) ∩ Fi and γ ∈ Γj , j 6= i.
iii) the function ψ is bounded.

One can finally decompose the process Xt(v) as Xt(v) =
Nt(v)∑
k=1

φ(T kx) +Rt(v) where

φ satisfies the conclusions of the above lemma and the equality
∫
Λ
φ dν = 0, and the

remainder term Rt(v) is of the form A(gtv)−A(v) +ψ(y, x)−ψ(T̄N (y, x)) with N =
Nt(v). Since A is integrable with respect to m and ψ bounded,

(
Rt/

√
t
)

t
converges

almost surely to 0, so that it now suffices to study the behavior in distribution of the

random sum
Nt(v)−1∑

k=0

φ(T kx).

Step 2.— The Central Limit Theorem for Birkhoff sums on (Λ, T, ν)
In this part, we prove the following statement :

Proposition III.8 Let f be a Borel function from Λ(Γ) to C such that
i) |f(x)| ≤ Cl(x) + C for all x ∈ Λ
ii) |f(γ.x)− f(γ.y)| ≤ C|x− y|α for any x, y ∈ ΛΓ ∩ Fi and γ ∈ Γj , j 6= i.

Then, one has ν(f2) < +∞ and the sequence
(ν((Snf − nν(f))2

)
n

)
n

converges to a

constant σ2
f ; furthermore, σ2

f = 0 if and only if f is a T -coboundary in Lα, i-e if
there exists a function f ∈ Lα such that f = ν(f) + f ◦ T − f .

When σ2
f > 0 one has

1
σf
√
n

(
Snf(x) − nν(f)

)
L→ N (0, 1), the point x being dis-

tributed among the probability measure ν. Otherwise, anSnf L→ 0 for any sequence
(an)n which tends to 0.

Sketch of the proof. This is a well known result ([17], [21]), we just recall here the idea
of the proof with some complements which will be of interest in the Step 4. Under
hypothesis i), one has ν(|f |k) < +∞ for any k ≥ 0 ; without loss of generality,
we will assume ν(f) = 0.
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Using the duality between Lδ and the transformation T , we have for all u ∈ IR∫
Λ

exp
(
iu
Snf(x)√

n

)
dν(x) =

∫
Λ

Lδ[eiufLδ[eiuf [. . .Lδe
iufh] . . .]](x)σ(dx).

This leads us to introduce the Fourier operator Lδ,u acting on Lα by

Lδ,uψ = Lδ(eiufψ)

so that we get
∫

Λ

exp
(
iu
Snf(x)√

n

)
ν(dx) =

∫
Λ

Ln
δ,u/

√
nh(x)σ(dx).

Note that Lδ,0 coincides with Lδ and that, by hypothesis ii), the operator Lδ,u acts
on Lα for any u ∈ IR ; furthermore the function u 7→ Lδ,u is C∞ regular from IR into
the space L(Lα) of linear operators on Lα.
Assume now L > 2 i-e Γ contains at least three Schottky factors ; the case L = 2 is a
little more delicate since Lδ,u has two dominant eigenvalues whose regularity in u has
to be controlled, we refer to ([21]) for a complete proof. By Proposition III.4, there
exists a linear operator R on Lα with spectral radius < 1 such that

Lδ(.) = σ(.)h+R(.).

By perturbation theory, there exists an open neigbourhood U of 0 and C2- functions
u 7→ λu from U to C , u 7→ hu from U to Lα, u 7→ σu(.) from U to the dual space L′α
of Lα and u 7→ Ru from U to L(Lα) such that

Lδ,u(.) = λuσu(.)hu +Ru(.)

with λ0 = 1, h0 = h and R0 = R. The functions u 7→ hu and u 7→ σu(.) are determined
up to a multiplicative constant, one may thus normalize hu and σu in such a way that
σ(hu) = 1 and σu(hu) = 1. One has

Ln
δ,uh(x) = λn

uσu(h)hu(x) +Rn
uh(x).

The function u 7→ σ(Rn
uh) is C2 and vanishes at 0 ; furthermore, σu(h) = 1 + o(u)

and there exists η > 0 and C > 0 such that ||Rn
u||α ≤ C(1− η)n for any u in U ; so

σ(Ln
δ,uh) = λn

u + uεn(u) with |εn(u)| ≤ C(|λu|n + (1− η)n).

The control of the dominant term λn
u relies on the following

Lemma III.9 One has λ′0 = 0 and λ′′0 = −ν(f2) + 2iν(fh′0). Furthermore λ′′0 ∈ IR
−

and the equality λ′′0 = 0 holds if and only if f is a coboundary in Lα. At last, the
sequence (nλ′′0 + ν((Snf)2))n≥1 is bounded.

Proof. Differentiating the two sides of the equality λu = σ(eiufhu) yields to

λ′u = iσ(eiuf fhu) + σ(eiufh′u). (6)

Letting u = 0 one gets λ′0 = iσ(fh) + σ(h′0) ; the normalisation condition σ(hu) = 1
implies σ(h′0) = 0 and so λ′0 = iν(f) = 0. Differentiating again the two sides of the
equality (6) and letting u = 0 we get

λ′′0 = −ν(f2) + 2iσ(fh′0).

Conjugating the two sides in the equality Lδ,uhu = λuhu, one gets Lδ,−uhu = λu hu

and so λ−u = λu and h−u = hu ; the derivate at 0 of the function u 7→ hu is thus
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purely imaginary valued, which implies that h′0 = ihf for some real valued function
f in Lα. Differentiating the equality Lδ,uhu = λuhu and letting u = 0, one gets
Lδ((f − f)h) = hf and so ν(ff ◦ T ) = ν(f2)− ν(f.f ◦ T ) ; this readily implies

λ′′0 = −(ν(f2) + 2ν(ff)) = −ν((f + f − f ◦ T )2).

Set σf =
√
ν((f + f − f ◦ T )2) and remark that σf = 0 if and only if f is a cobound-

ary in Lα. To prove the last assertion of Lemma III.9, let us remark that σ(Ln
δ,uh) =

ν(eiuSnf ) and so σ
(
(Ln

δ,uh)
′′|u=0

)
= −ν((Snf)2). On the other hand, Ln

δ,uh =
λn

uσu(h)hu +Rn
uh ; an elementary calculus leads to

σ
(
(Ln

δ,uh)
′′|u=0

)
= nλ′′0 + σ

( d2

du2
(σu(h)hu +Rn

uh)
)

u=0

the last term being bounded in n.This achieves the proof of Lemma III.9.
Let us now achieve the proof of Proposition III.8. If f is not a coboundary, one gets

σ(Ln
δ,uh) = (1− σ2

f

u2

2
+ u2o(u))n + uεn(u);

it follows immediately

lim
n→+∞

σ
(
Ln

δ,u/
√

nh
)

= exp(−σ2
f u

2/2).

This is the expected result when f is not a coboundary. The second assertion of the
proposition is obvious.
Remark- Conditions i) and ii) of Proposition III.8 may be obviously relaxed. In
fact we only need that the function u 7→ Lδ,u is C2-regular. It seems to be not
possible (neither natural) to express this condition directly in term of the function
f . In subsection IV-d, we will apply proposition III.8 to another class of functions f
than the one considered here.

In the sequel, we will apply Proposition III.8 to the function φ associated with Φ (see
lemma III.7); the fact that the sequence (nλ′′0 + ν((Snφ)2))n≥1 is bounded will be
important to express the variance σ2

φ in terms of the function Φ. In fact we will need
more than this estimation ; we have the

Lemma III.10 Assume that hypotheses of Proposition III.8 hold and that ν(f) = 0.
Then, for any k ≥ 1 there exists a constant Ck > 0, such that

∀n ≥ 1 ν
(
(Snf)2k

)
≤ Ckn

k.

Proof. This lemma is close to lemma 3.2 in ([31]), the proof proposed here is new and
quite simpler. For any n, k ≥ 1, one has∣∣∣σ(

(Ln
δ,uh)

(2k)|u=0

)∣∣∣ = ν((Snf)2k).

Since Ln
δ,uh = λn

uσu(h)hu + Rn
uh and the spectral radius of Ru is < 1 for u small

enough, it suffices to prove that the sequence

∣∣∣(λn
u)(2k)|u=0

∣∣∣
nk

is bounded in n. Recall

that λu admits the local expansion λu = a0 +a1u+a2u
2 + . . . with a0 = 1 and a1 = 0
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; in particular, the term (λn
u)(2k)|u=0, which is also the 2kth coefficient of the local

expansion of λn
u, is equal to

a(2k)
n =

∑
l1,...ln≥0∑

i
li=2k

(2k)!
l1! . . . ln!

al1 . . . aln .

Note that none of the li is equal to 1 in the previous sum since a1 = 0 ; the term
|a(2k)

n | is thus less than (2k)!A2k
k ]In,k with Ak = sup

0≤i≤2k
|ai| and

In,k = {(l1, . . . , ln) : 0 ≤ li ≤ 2k,
∑

i

li = 2k, li 6= 1}.

A simple inductive argument show that there exists a universal constant C > 0 such
that ]In,k ≤ Cnk for any n, k ≥ 1. This achieves the proof of the lemma.
Step 3.— Proof of the Central Limit Theorem for the process (Xt)
One may apply Proposition III.8 to the function l itself. Note that σ2

l > 0 ; otherwise
l − ν(l) should be a coboundary in Lα and so l should be bounded. Contradiction.
Using thus classical techniques coming from the probability theory, one obtains the
following

Corollary III.11 One has lim
t→+∞

Nt(v) = +∞ for m-almost all v and the process

(√
t
(Nt(.)

t
− 1
ν(l)

))
t>0

converges in law to a Gaussian law N (0, σ2
l /ν(l)

3).

Proof. To deduce this corollary from Proposition III.8, fix a ∈ IR and set at =
[a
√
t+ t/ν(l)] ; one has

m{v :
√
t(Nt/t− 1/ν(l)) ≤ a} = m

{
v = (y, x, r) : Sat

> t+ r
}

=
{
v :

Sat
− atν(l)
σl
√
at

>
t+ r − atν(l)

σl
√
at

}
.

Since
t+ r − atν(l)

σl
√
at

= −aν(l)
3

σl
(1 +O(1/

√
t)) and r/

√
at → 0 in probability, one has

finally

lim
t→+∞

m
{
v :

√
t
(
Nt/t− 1/ν(l)

)
≤ a

}
=

1√
2π

∫ aν(l)3/σl

−∞
e−x2/2dx

which is the expected convergence.

We now prove Theorem III.5. For any v = (y, x, r) ∈ Dl, one hasXt(v) =
Nt(v)−1∑

k=0

φ(T kx)+

Rt(v), the function φ satisfying the hypotheses of Proposition III.8. Set σ2
Φ =

σ2
φ

ν(l)

where σ2
φ = lim

n→+∞

ν
(
(Snφ− nν(φ))2

)
n

is the variance associated with φ.
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Assume first σ2
φ 6= 0. The term

1√
t
Rt(v) is not relevant since it tends to 0 in prob-

ability. To control the term
1√
t
SNt(v)φ(x) we write Nt(v) = nt + (Nt(v) − nt) with

nt = [t/ν(l)]; by Proposition III.8, the sequence
( 1√

t
Sntφ

)
t
converges in distribution

to a Gaussian law N (ν(φ), σ2
φ). On the other hand, for any non negative constants

K and ε, one may decompose the set {v ∈ Dl/|SNt(v)φ(x) − Snt
φ(x)| ≥ ε

√
t} into

At +Bt where

At = {v ∈ Dl/|SNt(v)φ(x)− Snt
φ(x)| ≥ ε

√
t, |Nt(v)− nt| ≥ K

√
t}

and Bt = {v ∈ Dl/|SNt(v)φ(x)− Sntφ(x)| ≥ ε
√
t, |Nt(v)− nt| < K

√
t}.

One has obviously At ⊂ {v ∈ Dl/|Nt(v)− nt| ≥ K
√
t} ; the tightness of the process(Nt − nt√

t

)
t
(which is a direct consequence of corollary III.11) implies lim sup

K→+∞
lim sup
t→+∞

m(At) =

0. On the other hand

Bt = {v ∈ Dl/|SNt(v)φ(x)− Sntφ(x)| ≥ ε
√
t, |Nt(v)− nt| < K

√
t}

⊂ {v ∈ Dl/
1√
t

sup
0≤k≤K

√
t

|Skφ(x)| ≥ ε}

To conclude one uses the following lemma which extends a previous result due to Y.
Guivar’ch and Y. Le Jan ([19]):

Lemma III.12 For any Borel function φ : Λ → C , set Mnφ = sup
0≤k≤n

∣∣∣Skφ
∣∣∣. As-

sume that φ satisfies the hypotheses of Proposition III.8 and ν(φ) = 0. Then

i) the sequence
( 1
n
Mnφ

)
n

converges to 0 in probability.

ii) for any s > 0 one has ν
(( 1

n
sup

0≤k≤n

∣∣∣Skφ
∣∣∣)s)

≤ 1 + 2ν
(∣∣∣Snφ

n

∣∣∣s) < +∞.

Proof. It relies on some techniques developed in probability theory. Remark that the

operator Q : ϕ 7→ 1
h
Lδ(hϕ) is a Markov operator. We may thus introduce a Markov

chain (Xn)n≥0 on Λ with transition operatorQ and we denote by (Λ⊗IN ,B(Λ)⊗IN , (IP x)x∈Λ)
the canonical probability space associated with (Xn)n≥0 ; in particular, for any prob-
ability measure m on Λ one denotes by IPm the probability measure on Λ⊗IN so that
the law of X0 equals m, and by IEm the associated expectation. In this context, the
duality between Lδ and T readily implies that for any bounded Borel function Ψ on
Λn, one has ∫

Λ

Ψ(x, Tx, . . . , Tn−1x)ν(dx) = IEν [Ψ(Xn−1, . . . , X0)].

In particular, for any n ≥ 1, the functions Snφ and 1
n sup

0≤k≤n
|Skφ| can be considered

as random variables on the probability space (Λ,B(Λ), ν) whose law is respectively
the same as the one of the random variables Sn = φ(X0) + . . .+ φ(Xn−1) and Mn =
sup0≤k≤n |Sk| defined on (Λ⊗IN ,B(Λ)⊗IN , IP ν). Recall that Lδ acts on Lα, that it is
quasi-compact on this space with 1 as a simple and isolated dominant eigenvalue when
L > 2 (when L = 2, L2

δ acts on Lα(Λ̄1) and on Lα(Λ̄2), and the same conclusion holds
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on each of these two spaces). By the argument developed in the proof of Proposition
III.8, one may proves that, for any t ∈ IR, the sequence

(
Ln

δ,u/
√

n
h)(x)

)
converges,

uniformly in x in Λ, either to exp(−σφt
2/2) with σ2

φ > 0 when φ is not a coboundary,
or to 0 otherwise. By a standard argument in probability theory, that proves that the
sequence of random variables (Sn/

√
n)n converges in law according to the probability

IP x, uniformly in x ∈ Λ, which implies in particular that lim
n→+∞

sup
x∈Λ

IP x

[
|Sn| ≥ nηε

]
=

0 for any η > 1/2 and ε > 0.
To prove the lemma, we will check that for such η ∈] 12 , 1[ and any c > 0, there exists
n1 ≥ 1 depending only on η such that for any n ≥ n1 and x ∈ Λ one has

IP x[|Sn| ≥ nc− nη] ≥ IP x[Mn ≥ nc]
2

. (7)

The first assertion of Lemma III.12 is a direct consequence of this inequality. The
second one follows from the fact that for n1−η ≥ 2 one has

IEx

[(Mn

n

)s]
≤ 1 +

∑
k≥1

IP x

[(Mn

n

)s

≥ k
]

≤ 1 + 2
∑
k≥1

IP x

[(
2
|Sn|
n

)s

≥ k
]

≤ 1 + 2IEx

[(
2
|Sn|
n

)s]
.

the last term being finite by Lemma III.10.
To prove inequality (7), we fix a, b ∈ IR∗ and, for any 0 ≤ k ≤ n− 1 we consider the
event Ak = [|S0| < a + b, . . . , |Sk−1| < a + b, |Sk| ≥ a + b] ; these sets are pairwise
disjoint, and, setting Sn

k = φ(Xk) + . . .+ φ(Xn−1) one may write

IP x[|Sn| ≥ a] ≥
n−1∑
k=0

IP x[Ak ∩ [|Sn
k | ≤ b]]

≥
n−1∑
k=0

∫
Ak

IPXk(ω)[|Sn
k | ≤ b]IP x(dω))

≥
n−1∑
k=0

IP x(Ak) inf
y∈Λ

IP y[|Sn−k| ≤ b]

We will set a = nc − nη and b = nη. Since IP x

[
|Sn| ≤ nη

]
→ 1 uniformly in x ∈ Λ,

there exists n0 such that inf
y∈Λ

IP y[|Sn−k| ≤ nη] ≥ inf
y∈Λ

IP y[|Sn−k| ≤ (n − k)η] ≥ 1/2

for n − k ≥ n0 ; on the other hand, for n − k < n0 one has IP y[|Sn−k| ≤ nη] ≥
IP y[Mn0 ≤ nη] → 1, uniformly in y ∈ Λ as n → +∞. There thus exists n1 such that
IP y[|Sn−k| ≤ nη] ≥ 1/2 for any y ∈ Λ, n ≥ n1 and 1 ≤ k ≤ n. This gives the expected
result since [Mn ≥ nc] is the disjoint union of the Ak, 0 ≤ k ≤ n− 1.
Step 4.— Analysis of the variance– We simplify and extend here M. Ratner’s argu-
ments ([31]) Let Φ : T 1M → C a bounded and Hölder continuous function such
that m(Φ) = 0. We denote by φ̄ (resp. φ) the associated Borel function defined on
Λ̄ (resp. on Λ) ; recall that ν̄(φ̄) = ν(φ) = 0. We have σ2

φ = 0 if and only if φ
is a coboundary in Lα : there exists ϕ ∈ Lα such that φ = ϕ − ϕ ◦ T . By lemma
III-6, this occurs if and only if φ̄ = F − F ◦ T̄ for some Borel bounded function
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F : Λ̄ → C . If such a function F exists then Φ is a coboundary for the geodesic flow

on T 1M : setting Φ∗(y, x, t) = −F (y, x) +
∫ t

0

Φ(y, x, s)ds (with the usual identifica-

tion (y, x, l(x)) ∼ (T̄ (y, x), 0)) one has, for any r > 0 :

Φr = Φ∗ ◦ gr − Φ∗ where Φr(y, x, t) =
∫ r

0

Φ(y, x, t+ s)ds

(one easily checks that Φ∗(y, x, l(x)) = Φ∗(T̄ (y, x), 0)a.s. and that the above cobound-
ary equation holds). Conversely, if Φ is a coboundary for the geodesic flow on T 1M
there exists a Borel function Φ∗ : T 1M → C such that Φr = Φ∗ ◦ gr − Φ∗ m − a.s

for any r > 0, and the continuity of Φ implies
∂

∂t
Φ∗ = Φ m− a.s. Setting F (y, x) =

−Φ∗(y, x, 0) one thus gets φ̄ = F − F ◦ T̄ .

Let us now establish the fact that
∫

T 1M

X2
t (v)
t

m(dv) → σ2
φ/ν(l) = σ2

Φ as t → +∞.

Since the process (Xt)t satisfies the Central Limit Theorem with variance σ2
φ, it

suffices in fact to establish the equi-integrability of the family
(X2

t

t

)
t>0

i-e that, for

any C > 0, the integral
∫

[X2
t≥tC]

X2
t (v)
t

m(dv) tends to 0 as C → +∞, uniformly in

t > 0. Since ∫
[X2

t≥tC]

X2
t (v)
t

m(dv) ≤ 1
C

∫
X4

t (v)
t2

m(dv),

it suffices to prove that sup
t>0

∫
Xs

t (v)
ts/2

m(dv) < +∞ for any s > 0. Recall that Xt may

be decomposed into SNt
φ(.)+A(gt.)−A(.) up a bounded term ; so, Xs

t (.) is bounded
by (SNt

φ(.))s +A(gt.)s +A(.)s + 1, up to a multiplicative constant and it suffices to
check that

sup
t>0

∫
(SNt(v)φ)s(x)

ts/2
m(dv) < +∞.

Denote by Ñt the random variable
√
t
(Nt

t
− 1
ν(l)

)
. Fix k ∈ ZZ, set kt =

[
t

ν(l) + k
√
t
]

and observe that, on the set {Ñt(v) ∈ [k, k + 1[}, the difference between the sums
SNtφ and Sktφ is bounded by M[

√
t+1]φ ◦ T kt . So, for any s > 0, one has∫

{Ñt∈[k,k+1[}

(
SNtφ

)2s

m(dv) ≤
∫
{Ñt∈[k,k+1[}

(
(Sktφ)2s + (M[

√
t+1]φ)2s

)
m(dv),

up to a multiplicative constant depending only on s. By lemmas III.10 and III.12,
since kt = O(t) and [

√
t+ 1] = O(

√
t), it readily follows that∫

{Ñt∈[k,k+1[}

(
SNtφ

)2s

m(dv) = O(ts).

Consequently, one has∫ (
SNtφ

)s

m(dv) ≤
∑
k∈ZZ

∫
{Ñt∈[k,k+1[}

(
SNtφ

)s

m(dv)

≤
∑
k∈ZZ

√
ν
(
Ñt ∈ [k, k + 1[

)(∫
{Ñt∈[k,k+1[}

(SNt
φ)2sm(dv)

)1/2
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≤ ts/2
∑
k∈ZZ

√
ν
(
Ñt ∈ [k, k + 1[

)
up to a multiplicative constant depending only on s. Using the definition of Nt and
Lemma III.10, one easily checks that the variable Ñt has finite and bounded mo-

ments of any orders ; so the sum
∑
k∈ZZ

√
ν
(
Ñt ∈ [k, k + 1[

)
is also finite and bounded

uniformly in t.

IV Schottky products with parabolic subgroups and
the associated winding process

From now on, we consider a group Γ which is a Schottky product Γ1 ∗ . . . ∗ ΓL with
a parabolic subgroup P as a Schottky factor. We will use the notation of section II.
Note that, if Γ1 = P , the group Γ is the Schottky product of the two factors Γ1 and
Γ2 ∗ . . . ∗ ΓL ; so, without loss of generality, we will assume Γ = P ∗ G with P a
parabolic subgroup of Iso(X) and G a discrete subgroup.
In this section, we will assume that the curvature is constant and equal to −1, i-e
X = IHn. Note that we will only use the fact that there exists a neigbourhood of the
cusp C associated with P which is isometric to the quotient of some horoball of IHn

by P ; the curvature may thus vary outside this cusp but this level of generalisation
is not very important and might be confusing in the sequel.

IV-a Parabolic subgroups of Iso(IHn).

We recall here some classical results about parabolic subgroups P of Iso(IHn) ([32])
and give a precise description of their first homology group.
A discrete subgroup P of Iso(IHn) is parabolic if it fixes exactly one point on the

boundary. Let xP be this fixed point. The inversion s : x → xP + 2
x− xP

|x− xP |2
sends

the point xP to ∞ in the upper half-space model IHn = { x+ x′ xP ; x ∈ x⊥P , x′ > 0}
of the hyperbolic space (that we shall identify with IRn−1 × IR+). In this model, any
element p of P acts on the boundary component IRn−1 as an euclidean isometry, the
restriction to Sn−1 − {xP } of each element p in P may thus be decomposed as

p = s−1 TpRp s

where Rp is a rotation of IRn−1 and Tp a translation of IRn−1. The vector of the
translation will be denoted ~τp. The relation for large p’s between the euclidean norm
|~τp| and the dilatation factor of p is described in the following lemma:

Lemma IV.1 Let P be a discrete parabolic group of IHn, with fixed point xP . Then
for each point x ∈ Sn−1 − {xP }, the product |p′(x)|.|~τp|2 converges towards 4/|x −
xP |2 as p goes to infinity in P . This convergence is uniform on compact subsets of
Sn−1 − {xP }.

Proof : The parabolic element p ∈ P satisfies: |p′(xP )| = 1. By the mean-value rela-

tion 2, we get |p′(x)| = |p.x− xP |2

|x− xP |2
. Now |p.x−xP | =

2
|sp.x− xP |

=
2

|Rp(sx) + ~τp − xP |
and |~τp||p.x − xP | converges uniformly towards 2 on compact sets in the hyperplane
orthogonal to xP . The lemma follows.
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Note that the group P acts on IRn−1 as a Bieberbach’s group ; in particular it
contains a finite index and normal subgroup Q which acts on IRn−1 as an abelian
group generated by k independent translations. The integer k is called the rank of
the parabolic group P .

The first homology group H1(P,ZZ) = P/[P, P ] is the product of a finite group and
the free abelian group ZZκ where κ = b1(P ) is the first Betti number of P .
In dimension n = 2 and n = 3 all (orientation-preserving) Bieberbach groups of IRn−1

are commutative and thus b1(P ) coincides with the rank of P . This is not true in

higher dimension : the group in IR3 generated by x →

 −1 0 0
0 −1 0
0 0 1

x + e3 and

x → x+ e2 is a Bieberbach group with rank 2 and first Betti number equal to 1. In
general, b1(P ) is less than or equal to the rank of P .

The following lemma, which provides an explicit set of representatives of P mod Q,
will be helpful in order to compute the homology class of an arbitrary element in P .

Lemma IV.2 Let k be the rank of P and κ ≤ k its first Betti number. Then there
exists a finite set {q1, . . . , qk} of independent translations of Q, with qκ+1, . . . , qk ∈
Q ∩ [P, P ] and a finite set P0 in P such that any element p ∈ P can be uniquely
written as

p = qn1
1 · · · qnκ

κ q
nκ+1
κ+1 . . . qnk

k α

for some n1, . . . , nk ∈ ZZ and α ∈ P0.

Proof. Since the abelian subgroup Q is of finite index in P , its image [Q] by the
Hurewicz homomorphism [ . ] : P → H1(P,ZZ) has finite index in ZZκ. We choose
a basis {c1, · · · , cκ} of ZZκ and integers d1, . . . dκ such that {d1c1, . . . , dκcκ} forms a
basis of [Q]. This allows us to choose elements p1, . . . pκ in P such that [pi] = ci
and q1, . . . qκ in Q such that [qi] = dici and one may complete the family {q1, . . . qκ}
with k − κ independent translations in such a way the abelian group Q0 generated
by q1, . . . , qk has finite index in Q (the elements qκ+1, . . . , qk belong to [P, P ]). The
homology class of any p in P may be written in the form

[p] =
∑

nidici +
∑

mici

for some integers ni ∈ ZZ and mi ∈ {0, . . . , di − 1}. In particular p has the same
homology class as qn1

1 · · · qnκ
κ pm1

1 · · · pmκ
κ , so there exists p′ ∈ [P, P ] such that

p = qn1
1 · · · qnκ

κ pm1
1 · · · pmκ

κ p′.

Observe now that the subgroup Q0∩ [P, P ] has finite index in [P, P ] since [P, P ]/Q0∩
[P, P ] is isomorphic to Q0[P, P ]/Q0. By choosing a set f1, . . . , fd of representatives
of [P, P ] mod Q0 ∩ [P, P ], setting P0 = {pm1

1 · · · pmκ
κ fj , 0 ≤ mi < di − 1, 1 ≤ j ≤ d}

and using the fact that Q0 is abelian, we get the lemma.
Note that [Q] is a finite index subgroup of the free abelian part of H1(P,ZZ). One
may thus modify the decomposition of H1(P,ZZ) as the product of a finite group and
a free abelian part ZZκ in such a way that this free abelian part is equal to [Q] ;
consequently if p ∈ P is decomposed as p = qn1

1 · · · qnκ
κ q

nκ+1
κ+1 . . . qnk

k α with ni ∈ ZZ
and α ∈ P0, the free part of its homology classes is equal to [q] = (n1, . . . , nκ).
Notation - In the sequel, the translation vector of each generator qi will be denoted
by ~τi and, for any n̄ = (n1, . . . , nκ) ∈ ZZκ, one sets ~τn̄ = n1~τ1 + . . .+ nκ~τκ.
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Using the δ-conformality of the Patterson measure σ one may describe precisely the
behavior of the measure ν in the neighbourhood of the fixed point xP . More precisely,
Lemma IV.1 leads to the asymptotic behavior of the sequence (ν(pΛG))p∈P as p goes
to infinity in P . The following lemma gives in fact precise estimates of ν(Λn), n ∈ ZZκ,
where Λn =

⋃
p/[p]=n

p.ΛG.

Lemma IV.3 For any n = (n1, . . . , nκ) ∈ ZZκ, denote by |n̄| the euclidean norm of
the translation vector ~τn and let ~n = ~τn/|n̄|. One has ν(Λn) = ν(Λ−n) ; furthermore,
there exist a compact subset K0 ⊂ IR∗+ and, for any n ∈ ZZκ, a constant C~n in K0

such that
ν(Λn) ∼ C~n

|n|2δ−(k−κ)

as n→ +∞ in ZZκ.

Proof. The fact that ν is T -invariant implies ν(pΛG) = ν(ΛG×pΛG) = ν(p−1ΛG×ΛG)
; it readily follows ν(pΛG) = ν(p−1ΛG) since ν is invariant under the map (x, y) 7→
(y, x). The first property of the lemma follows, summing over p ∈ P with [p] = n.
Furthermore, for any p ∈ P one has

ν(pΛG) =
∫

pΛG

h(x)σ(dx) =
∫

ΛG

h(px)|p′(x)|δσ(dx) =
∫

ΛG×ΛG

|p′(x)|δ

|y − px|2δ
σ(dx)σ(dy)

and so |~τp|2δν(pΛG) → C =
(∫

ΛG

2δ

|x− xP |2δ
σ(dx)

)2

as p→ +∞ in P .

Recall that for any p ∈ P , the translation vector of p is denoted by ~τp ; if p admits

the decomposition p = qn1
1 . . . qnk

k α, one has |~τp| = |~τn̄ +
k∑

κ+1

~τi|(1+ o(n̄)) uniformly in

α since P0 is finite. So, for any n̄ ∈ ZZκ, one has

ν(Λn) =
∑

α∈P0

∑
nκ+1,...,nk∈ZZ

C

|~τn +
k∑

i=κ+1

ni~τi|2δ

(1 + o(n)).

Denote by |∆| the (k − κ)−volume of the simplex associated with ~τκ+1, . . . , ~τk. One
obtains

ν(Λn) ∼ ]P0
1

|∆|.|n|2δ−(k−κ)

∫
V ′′

dx

|~n+ x|2δ
as n→ +∞,

where V ′′ denotes the (k− κ)-dimensional space IR~τκ+1⊕ . . .⊕ IR~τk. This proves the

lemma with C~n =
]P0

|∆|

∫
V ′′

dx

|~n+ x|2δ
.

IV-b The transfer operators Lz,u,v.

We have constructed a dynamical system (Λ, T , ν) isomorphic to a symbolic space
of bi-infinite sequences such that the geodesic flow restricted to Ω is a suspension of
it with the ceiling function l. The projection p : Λ → Λ on the second coordinate
induces a factor (Λ, T, ν) of the dynamical system (Λ, T , ν).
In this section we study the family of transfer operators associated with the dynamical
system (Λ, T, ν), a function f defined on Λ and also the fonction HP defined by

∀ n ∈ ZZl − {0} HP (x) =
{
n if x ∈ Λn,
0 eitherwise

26



The function f is devoted to the process Xt and HP to Yt ; we will precise a bit latter
some conditions about the regularity of the function f .
Let C(Λ(Γ)) be the space of continuous functions from ΛΓ to C with the norm of
uniform convergence |.|∞. For any complex number z, any real u and any element v
of the κ-dimensional torus Tκ, canonically identified with the dual group of ZZκ, we
consider the operator Lz,u,v defined formally by

Lz,u,vϕ(x) =
∑

Ty=x

e−zl(y)+iuf(y)+i<v|HP (y)>ϕ(y).

Setting [γ] = 0 when γ ∈ G, one may thus write

Lz,u,vϕ(x) =
∑

γ∈P∗∪G∗

e−zb(γ,x)+iuf(γ.x)+i<v|[γ]>ϕ(γ.x).

This implies in particular that Lz,u,vϕ(x) is finite as soon as <(z) > max(δP , δG) and
in particular for <(z) = δΓ by the critical gap hypothesis.
As in the previous section, we will consider the restriction of Lz,u,v to the space Lα

of α−Hölder continuous functions on Λ(Γ), defined in subsection III.c.
For any (z, u, v) ∈ C × IR×Tκ and γ ∈ P ∗ ∪G∗, we consider the weight functions

wz,u,v(γ, .) = e−zb(γ,.)+iuf(γ.)+i<v|[γ]>.

Assume now that f satisfies the condition of Proposition III.8 ; as in Lemma III.3, one
may check that the weights wz,u,v belong to Lα and that the set {eRe(z)d(o,γo)wz,u,v(γ, .)/γ ∈
P ∗∪G∗} is bounded in Lα. By the critical gap property , it follows that the operators
Lδ,u,v act continuously on Lα. The following proposition gives a precise description
of the spectrum of Lδ,u,v on Lα when (u, v) is close to 0 ; its proof is based on the
description of the spectrum of Lδ (see Proposition III.4) and on the fact that the map
(u, v) 7→ Lδ,u,v is continuous from IR×Tκ to the space L(Lα).

Proposition IV.4 Fix 0 < α ≤ 1 and let ρ(u, v) be the spectral radius of the transfer
operator Lδ,u,v on Lα. Then, one has ρ(0, 0) = 1, the eigenvalues 1 and −1 are simple,
with eigenfunctions h and h(1ΛG

− 1ΛP
) respectively, and the rest of the spectrum of

Lδ,0,0 is included in a disk of radius < 1.
Furthermore, there exists a neigbourhood U0 of (0, 0) in IR × Tκ and ρ0 ∈]0, 1[ such
that, for any (u, v) ∈ U0

- ρ(u, v) > ρ0 and Lδ,u,v has two simple eigenvalues λ(u, v) and λ−(u, v) closed to
1 and −1 respectively,

- the rest of the spectrum of Lδ,u,v is included in a disc of radius ρ0.

In fact, by the theory of perturbation, the functions (u, v) 7→ λ(u, v) and (u, v) 7→
Lδ,u,v have the same regularity, whose type is described in the following proposition,
which extends previous results ([2], [18]) settled in a less general situation. We denote
by (~τ∗1 , . . . , ~τ

∗
κ) the dual basis of (~τ1, . . . , ~τκ), by |v| the euclidean norm of the vector

v1~τ
∗
1 + . . . + vκ~τ

∗
κ for any v = (vi)1≤i≤κ ∈ Tκ, and by ~v the unit vector v/|v|, when

v 6= 0.

Proposition IV.5 The application (u, v) 7→ λ(u, v) is continuous on U0, and its
behavior near (0, 0) is the following one, up to terms of greater order :

λ(u, v) =


1− σ2

f

2 u
2 −K(~v)|v|2δ−k if δ < 1 + k/2;

1− σ2
f

2 u
2 +K(~v)|v|2 log |v| if δ = 1 + k/2

1−Q(u, v) if δ > 1 + k/2
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where
- σ2

f is the asymptotic variance associated with f , which vanishes iff f is a cobound-
ary in Lα.

- K(~v) is a strictly positive real depending only on ~v.
- Q is a positive quadratic form on IR1+κ, whose restriction to IRκ is equal to

2K(~v)|v|2.

Remark 1 - In fact, K lives in a compact subset of IR∗+ since the function ~v 7→ K(~v)
is continuous on the unit ball of V ′ = IR~τ1 ⊕ . . .⊕ IR~τκ.
Remark 2 -It is of interest to decide whether the quadratic form Q is degenerated or
not, but this question needs further assumptions ; in particular if f coincides with one
coordinate of HP , the form Q is trivially degenerated. Nevertheless, the restriction
v 7→ Q(0, v) is positive definite on IRκ. The important fact in the previous proposition
is that the parameters u and v appear separately in the local expansion of λ(u, v),
when δ ≤ 1 + k/2 since in this case the functions Hi, 1 ≤ i ≤ κ are not square
integrable ; this is this phenomenom which explains the asymptotic independance of
Xt and Yt announced in the introduction.
Proof of Proposition IV.5- We have different cases to consider.
First case : δ ≤ 1 + k/2

a. In this case
∑
p∈P

|~τp|2||wδ(p, .)||α = +∞ and the function (u, v) 7→ Lδ,u,v is not

C2 on Tκ+1. Nevertheless, the function u 7→ Lδ,u,0 is always C∞ and, by a similar
argument than in the previous section, there exists σf ≥ 0 (wich vanishes if and only
if f is a coboundary in Lα) such that λ(u, 0) = 1− σ2

f

2 u
2(1 + o(u)).

b. We now study the function v 7→ λ(0, v). We have

λ(0, v) = σ(Lδ,0,vh) + σ((Lδ,0,v − Lδ)(h0,v − h)).

Moreover

σ(Lδ,0,vh)− 1 = ν(ei<v,HP >)− 1

=
∑

n∈ZZκ

ν(Λn)(ei<v,n> − 1)

= 2
∑

n∈ZZκ

(cos < v, n > −1)ν(Λn) since ν(Λn) = ν(Λ−n)

= −2
∑

n∈ZZκ−{0}

C~n
1− cos < v, n >

|n|2δ−(k−κ)
(1 + ε(n))

Recall that V ′ = IR~τ1⊕ . . .⊕IR~τκ and set V ′t = tZZ~τ1⊕ . . .⊕tZZ~τκ, where t = |v| is the
euclidean norm of the vector v1~τ∗1 . . .⊕ vκ~τ

∗
κ . Let |∆| be the volume of the κ-simplex

of V ′ defined by ~τ1, . . . , ~τκ.
- When δ < 1 + k/2, one has, using the estimates of lemma IV.3:∑

n∈ZZκ−{0}

C~n
1− cos < v, n >

|n|2δ−(k−κ)
=

∑
n∈ZZκ−{0}

C~n
1− cos <

∑κ
i=1 vi~τ

∗
i ,

∑κ
i=1 ni~τi >

|n|2δ−(k−κ)

=
t2δ−k

|∆|
∑

n∈ZZκ−{0}

C~n
1− cos < ~v, tn >

|tn|2δ−(k−κ)
|∆|tκ

=
t2δ−k

|∆|
∑

x∈V ′t−{0}

C~x
1− cos < ~v, x >

|x|2δ−(k−κ)
|∆|tκ
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∼ K(~v)t2δ−k

withK(~v) =
1
|∆|

∫
V ′
C~x

1− cos < ~v, x >

|x|2δ−(k−κ)
dx. Note that 0 < K(~v) < +∞ since 2δ−k >

0 and that K(~v) depends continuously on ~v.
- When δ = 1 + k/2, one has∑

n∈ZZκ−{0}

C~n
1− cos < v, n >

|n|2δ−(k−κ)
=

∑
n∈ZZκ−{0}

C~n
1− cos < v, n >

|n|κ+2

=
t2

|∆|
∑

x∈V ′t−{0}

C~x
1− cos < ~v, x >

|x|κ+2
|∆|tκ

=
t2

|∆|
∑
x∈V ′

t

|x|≥1

C~x
1− cos < ~v, x >

|x|κ+2
|∆|tκ

+
t2

|∆|
∑
x∈V ′

t

0<|x|<1

C~x
1− cos < ~v, x > − < ~v, x >2 /2

|x|κ+2
|∆|tκ

+
t2

2|∆|
∑
x∈V ′

t

0<|x|<1

C~x
< ~v, x >2

|x|κ+2
|∆|tκ.

As t→ 0, the two first terms of this last sum behave like Ct2 for some constant C > 0
and one has ∑

x∈V ′
t

0<|x|<1

C~x
< ~v, x >2

|x|κ+2
tl ∼

∫
{x∈M ′/|x|>1/t}

C~x
< ~v, x >2

|x|κ+2
dx

∼
∫
{x∈V ′/|x|>1/t}

C~x
< ~v, ~x >2

|x|κ
dx

∼ K(~v) log t

where K(~v) > 0 depends continuously on ~v.
Finally σ(Lδ,0,vh) = 1−Q(v)(1 + o(v)) with Q(v) = −2K(~v)|v|2 log |v| if δ = 1 + k/2
and Q(v) = 2K(~v)|v|2δ−k if δ < 1 + k/2.
It remains to control the term σ((Lδ,0,v − Lδ)(h0,v − h)). A classical argument in
perturbation theory implies ||h0,v − h|| = O(||Lδ,0,v − Lδ||) with

||Lδ,0,v − Lδ|| ≤
∑

p∈P∗

|ei<v,[p]> − 1| ||wδ(p, .)|| ≤ C
∑

p∈P∗

|ei<v,[p]> − 1|
|~τp|2δ

.

A similar argument than the one developed above leads to

||Lδ,0,v − Lδ|| ≤ CR(v) with R(v) =


|v|2δ−k if k

2 < δ < k+1
2

−|v| log |v| if δ = k+1
2

|v| if δ > k+1
2 .

Since R(v)2 = o(Q(v)) one gets finally λ(0, v) = 1 +Q(v)(1 + o(v)).
c. In order to control the residual term, one decomposes λ(u, v)− 1 into

λ(0, v)− 1 + λ(u, 0)− 1 +A(u, v)

29



with A(u, v) = λ(u, v) − λ(0, v) − λ(u, 0) + 1 ; using the relation Lδ,u,v − Lδ,u,0 =
Lδ,0,v − Lδ one gets

A(u, v) = σ((Lδ,u,v − Lδ)(hu,v − hu,0)) + σ((Lδ,u,v − Lδ,u,0)(hu,0 − h))
−σ((Lδ,0,v − Lδ)(h0,v − h))

and so |A(u, v)| = O(||Lδ,0,v −Lδ||2 + ||Lδ,u,0−Lδ||.||Lδ,v,0−Lδ||). This achieves the
control of the residual term.
Second case : δ > 1 + k/2 - Under this condition the series

∑
p∈P

|~τp|2δ||wδ(p, .)||α is

convergent and the function (u, v) 7→ Lδ,u,v is C2. So is the function (u, v) 7→ λ(u, v)
and we now calculate its derivates of order 1 and 2. Let hu,v be the unique eigen-
function of Lδ,u,v associated with λ(u, v) and such that σ(hu,v) = 1 ; the equality
Lδ,−u,−vhu,v = λ(u, v) hu,v implies hu,v = h−u,−v and λ(u, v) = λ(δ,−u,−v). The
derivates at 0 of the function (u, v) 7→ hu,v are thus purely imaginary valued.
In order to simplify the notation, and only all around the case δ > 1+k/2, we set
H = (Hn)0≤n≤κ with H0 = f and HP = (Hn)1≤n≤κ, and we denote by ∂0 the partial
derivate with respect to u and, for 1 ≤ n ≤ κ, by ∂n the partial derivate with respect
to vn ; since the derivates at (0, 0) of the function (u, v) 7→ hu,v belong to Lα and are
purely imaginary complex valued, there exists real valued functions d0, . . . , dn in Lα

such that ∂nhu,v|(u,v)=0 = idnh ; we set D = (dn)n. Differentiating the two sides of
the equality λ(u, v) = σ(ei<(u,v),H(.)>hu,v) yields to

∂nλ(u, v) = iσ(ei<(u,v),H(.)>Hnhu,v) + σ(ei<(u,v),H(.)>∂nhu,v) (1)

which gives, letting (u, v) = 0 :

∂nλ(0, 0) = iσ(Hnh) + iσ(dnh).

Since σ(hu,v) is always equal to 1, one has σ(dnh) = 0. On the other hand, one has
σ(H0h) = ν(f) = 0 by hypothesis and (σ(Hnh))1≤n≤κ =

∑
p∈P∗

[p]ν(pΛG) = 0 since

ν(pΛG) = ν(p−1ΛG) and [p] = −[p−1]. Finally ∂nλ(0, 0) = 0 for all n.
Let us now differentiate the two sides of the equality (1). We get, letting (u, v) = 0 :

∂n∂mλ(0, 0) = −σ(HnHmh+Hndmh+ dnHmh)
= −ν(HnHm +Hmdm + dnHm).

We have to prove that the quadratic form Q = (−∂n∂mλ(0, 0)) is positive definite.
If one differentiates the equality Lδ,u,vhu,v = λ(u, v)hu,v, one gets Lδ(Hnh) = dnh−
Lδdnh since ∂nλ(0, 0) = 0 ; so

ν(Hndm ◦ T ) = σ(Hnhdm ◦ T ) = σ((dnh− Lδ(dnh))dm) = ν(dn(dm − dm ◦ T ))

(here, we have used the fact that σ((φ ◦ T )ψ) = σ(φLδψ) for any functions φ and ψ
in L2(Λ, σ)).
Set u = v0 ; the equality ν(Hndm ◦ T ) = ν(dn(dm − dm ◦ T )) implies

−
∑

0≤n,m≤κ

∂n∂mλ(0, 0)vnvm = ν(< (u, v),H +D −D ◦ T >2),

so this quadratic form is positive. The fact that Q(0, v) = 2K(~v)|v|2 follows from the
equality σ(Lδ,0,vh) = 1− 2K(~v)|v|2(1 + o(v)), which can be be proved using a similar
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argument than the one developed above in the case δ = 1 + k/2. This achieves the
proof of Proposition IV.5.
The main consequence of Proposition IV.5 is a kind a homogeneity property of the
quantity λ(δ, u, v)−1 with respect to the variables u and v, described in the following

Corollary IV.6 For any n ≥ 1 denote by kn the transformation of IR1+κ defined
by

kn(u, v) =
( u√

n
,
v

d(n)

)
with d(n) =

n
1

2δ−k if δ < 1 + k/2√
n log n if δ = 1 + k/2√
n if δ > 1 + k/2.

Then, for any (u, v) ∈ IR1+κ, one has

lim
n→+∞

(
n(λ(kn(u, v))− 1

)
=

{
K(~v)|v|2δ−k +

σ2
f

2
u2 if δ ≤ 1 + k/2

Q(u, v) if δ > 1 + k/2.

IV-c The process (Yt(v)) and its decomposition

In this section, we explain how the winding process (Yt) associated with a closed 1-
form supported on a neighbourhood of the cusp C can be presented as a Birkhoff sum
over the dynamical system (Λ, T, ν) that we have just constructed. This presentation
is the analogous of Proposition III.6 concerning the process (Xt). We first give a
description of the cusp C.

IV-c.1 The cusp.

Since we know that Γ is geometrically finite, by the Margulis lemma ([32]), there
exists a horoball Hh = {(x, x′);x′ ≥ h} centered at xP such that its images under Γ
are equal or pairwise disjoint. The quotient manifold Ch = Hh/P is homeomorphic
to the cylinder IRn−1)× [h,+∞]/P and imbeds isometrically in M as a submanifold
with boundary. We call Ch the cusp (of height h) associated with P .
For further convenience, we shall also choose the horoball Hh so that closed geodesics
arcs in M represented by elements of G and starting from a suitable compact neigh-
borhood of some fixed origin in M completely avoid the cusp Ch. This is possible
according to the following lemma:

Lemma IV.7 For any r > 0, there exist h > 0 only depending on r such that for
any two points x and y in IHn at distance less than r from the origin, and any element
g ∈ G, the geodesic segment [x, g.y] do not intersect the union of the horoballs γHh,
γ ∈ Γ.

Proof. Note that the geodesic segment [x, g.y] belongs to the r-neighborhood of
the geodesic arc [o, g.o]. It suffices to prove that there exists a horoball Hh such
that ∪γ∈ΓγHh do not intersect ∪g∈G[o, g.o], since by shrinking it by an amount only
depending on r, any translate of it will avoid the r-neighborhood of ∪g∈G[o, g.o].
So suppose such a horoball does not exist. This provides for any integer n two
elements gn ∈ G and γn in Γ such that [o, gn.o] ∩ γ−1

n Hn 6= ∅ or equivalently such
that [γn.o, γngn.o] ∩ Hn 6= ∅. Write γn as a product of elements in P and in G. Any
horoball being invariant under P , we may assume that the first letter of γn belongs
to G., so that both γn and γngn belongs to G ∪ G∗Γ. But for such sequences, any
accumulation point at infinity belongs to the closed set FG. Then, the endpoints of
the geodesics arcs [γn.o, γngn.o] either remain in a compact region of the hyperbolic
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space or accumulate in the compact set FG ⊂ IRn−1. This contradicts the fact that
these geodesics arcs can meet arbitrarily small horoballs centered at xP . The lemma
is proved.
Note that D has compact closure in Λ(Γ)

∆

×Λ(Γ), so that the base points of the unit
vectors v = (y, x, 0) with (y, x) ∈ D are at distance less than r from the origin,
for some r. In the following, we shall choose h so that the lemma is satisfied with
this value of r. In particular, if y ∈ ΛP and x ∈ gΛP for some g ∈ G∗ the base
point of (y, x, l(x)) is at a distance less than r from g.o ; so, the geodesic segment
{(y, x, s), 0 ≤ s < l(x)} does not intersect the union ∪γ∈ΓγHh. If y ∈ ΛG and x ∈ pΛG

for some p ∈ P ∗ and if h is large enough the segment {(y, x, s), 0 ≤ s < f(x)} does
not intersect the horoballs γHh, γ /∈ P ; on the other hand, for all but finitely many
p ∈ P , it intersects the horoball Hh.

IV-c.2 Decomposition of the process (Yt)t

Let us precise that we say that the form ω on M is supported on a neighbourhood of
C if ωx = 0 when x ∈ Ch for h large enough ; in the same way, we say that ω is closed
on the cusp if ω is closed on Ch for some sufficiently big h.
Such a form ω induces an element [ω] in the first cohomology group H1(Ch, IR). By
De Rham Theorem, there exists a family {ω1, . . . ωκ} of 1-forms on the manifold
C2h whose cohomology classes provide a basis of H1(C2h, IR) such that

∫
[qj ]

ωi = δij

(the elements [qj ] are the homology classes of the elements qj of P given by Lemma

IV.1).The decomposition [ω] =
κ∑

i=1

vi [ωi] means that the form ω restricted to C2h is

equal to
∑
vi ωi plus an exact form on C2h. By adding this exact term to ω1, we may

(and shall) assume that ω −
∑
vi ωi vanishes on C2h. The forms ω1, · · · , ωκ can then

be extended to M in such a way they vanish outside Ch. Finally, we can write ω as

ω = ω0 +
κ∑

i=1

vi ωi

where ω0 has compact support in M , and the ωi are 1-forms supported on Ch and
closed on C2h.

Consider now the process Yt : T 1M → IR given by : Yt(v) =
∫

[v0,vt]

ω where for t > 0,

[v0, vt] is the geodesic segment of length t starting at v ∈ T 1M .

Proposition IV.8 For i = 1, ...κ, denote by Hi the function from Λ to IR with
constant value

∫
[p]
ωi on the element pΛG of the partition of Λ and by H the func-

tion H =
κ∑

i=1

viHi. Then there exists a Borel function A : Dl → IR and a Hölder

continuous function h : Λ → IR such that for any v = (y, x, r) ∈ Λ one has :

Yt(v) = A(vt)−A(v) +
Nt(v)−1∑

k=0

h(T kx) +
Nt(v)−1∑

k=0

H(T kx).

Moreover there exists a constant C such that :
i) |h(x)| ≤ Cl(x) + C for any x in Λ
ii) |h(p.x)− h(p.y)| ≤ C|x− y|1/2 for any two points x, y in ΛG and p ∈ G
iii) |h(g.x)− h(g.y)| ≤ C|x− y|1/2 for any two points x, y in ΛP and g ∈ G.

32



The proof is close to the one of Proposition III.6 with some adjustments we have to
precise.
Observe that the Γ-invariance of the lift ω̃ of ω implies that the function (y, x, r) 7→
ω̃(y, x, r) is invariant under the transformation Tf . This allows us to write:

Yt(v) =
∫ t

0

ω̃(y, x, r + s) ds

= −
∫ r

0

ω̃(y, x, s) ds+
∫ Snl(x)

0

ω̃(y, x, s) ds+
∫ t+r

Snl(x)

ω̃(y, x, s) ds

= B(vt)−B(v) +
n−1∑
k=0

Ω(T̄ k(y, x))

where we have set B(v) =
∫ r

0

ω̃(y, x, s) ds and Ω(y, x) =
∫ l(x)

0

ω̃(y, x, s) ds and

n ∈ IN is such that Snl(x) ≤ r + t < Sn+1l(x). Recall now the decomposition

ω = ω0 +
κ∑

i=1

viωi. Since the 1-form ω0 has compact support, the function Ω0(y, x) =∫ f(x)

0

ω̃0(y, x, s) ds is bounded and Lispschitz continuous on T 1M . For such a func-

tion, there exists a measurable function b0 : Λ → IR and some function g0 satisfying
the properties i), ii), iii) of Proposition IV.8 such that

n−1∑
k=0

Ω0(T̄ k(y, x)) =
n−1∑
k=0

g0(T kx) + b0(Tn(y, x))− b0(y, x).

Let us now look at the integrals Ωi(y, x) =
∫ l(x)

0

ω̃i(y, x, s) ds, for 1 ≤ i ≤ κ, which

give the contribution coming from the excursions in the cusp. Recall that, by the
choice of h,(cf Lemma IV.7), if y ∈ ΛP and x ∈ gΛP for some g ∈ G∗, the geodesic
segment {(y, x, s), 0 ≤ s < l(x)} does not intersect the union ∪γ∈ΓγHh ; the above
integrals are then equal to 0 in this case. Assume now that y ∈ ΛG and x ∈ pΛG

for some p ∈ P ∗. Since h is large enough, the segment {(y, x, s), 0 ≤ s < l(x)}
does not intersect the horoballs γHh 6= H, but for all but finitely many p ∈ P , this
segment intersects the horoball Hh ; let x0 (resp. x1) be the point where this segment
enters (resp. leaves) Hh. The hyperbolic distances between x0 and the base point of
(y, x, 0) and between p.x0 and the base point of (y, x, l(x)) are bounded; that means

that Ωi(y, x) differs from the integral
∫

[x0,p.x0]

ω̃i =
∫

[p]

ωi by a bounded Lipschitz

term Gi(y, x). This implies that
n−1∑
k=0

Ωi(T̄ k(y, x)) =
n−1∑
k=0

Hi(T kx) +
n−1∑
k=0

Gi(T̄ k(y, x)).

Since Gi is bounded and Lipschitz, a classical argument similar to the one developed
in Section III.d, step 1, allows us to find measurable functions bi : Λ → IR and
functions gi : Λ → IR satisfying properties i), ii) and iii) above, and such that
Gi(y, x) = gi(x) + bi(T̄n(y, x))− bi(y, x).
Finally, we obtain the expected decomposition of Yt(v) setting A(y, x, s) = B(y, x, s)+

κ∑
i=0

bi(y, x) and h =
κ∑

i=0

gi. This achieves the proof of Proposition IV.8.
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IV-d The convergence in law for the process (Yt)t

In this last paragraph, we prove the following

Theorem IV.9 Let Γ a discrete subgroup in Iso(IH) which is a Schottky product
and which satisfies the critical gap property. Assume that the manifold M = IH/Γ
contains a cusp C whose fundamental group P = π1(C) is a Schottky factor of Γ. We
denote by δ the Hausdorff dimension of the limit set of Γ and by k the rank of the
parabolic group P .
For a closed 1-form ω supported on C, the corresponding process (Yt,m) satisfies a
limit theorem. The renormalising factor and the limit law depend on the values of the
parameter α := 2δ − k as follows:

If α < 2 d(t) = t1/α and the limit law is a stable law of index α

If α = 2 d(t) =
√
t log t and the limit law is a normal law

If α > 2 d(t) =
√
t and the limit law is a normal law.

Furthermore, when α ≤ 2, the two processes (Xt)t and (Yt)t are asymptotically inde-
pendent.

Recall the decomposition Yt(v) =
Nt(v)−1∑

k=0

h(T kx) +
Nt(v)−1∑

k=0

H(T kx) + Rt(v) where

h satisfies the hypotheses of Proposition III.8 and the remainder term Rt is of the
form A(gtv)−A(v) up to an additive uniformly bounded Borel function.
To control the Birkhof sums relative to the function HP , we will use the

Proposition IV.10 Let d(n) be the sequence defined in Corollary IV.6. Then, when

x is distributed among the law ν, the sequence
( 1
d(n)

n−1∑
k=0

HP (T kx)
)

n
converges in law

to a κ-dimensionnal stable law of index α = 2δ − k. More precisely, for any v ∈ Tκ,
one has

lim
n→+∞

∫
Λ

exp
(
i < v|SnHP (x)

d(n)
>

)
ν(dx) =

{
e−K(~v)|v|2δ−k

if δ ≤ 1 + k/2
e−K(~v)|v|2 if δ > 1 + k/2.

where K(~v) is a constant which lies in a compact subset of IR∗+ and depends continu-
ously on ~v. Furthermore, for any Borel function f satisfying hypotheses of Proposition
III.8 and such that ν(f) = 0 and σ2

f 6= 0, one has, when δ ≤ 1 + k/2

lim
n→+∞

∫
Λ

exp i
(
u
Snf(x)√

n
+ < v|SnHP (x)

d(n)
>

)
ν(dx) = e−

σ2
f
2 u2

e−K(~v)|v|2δ−k

.

The proof of this statement is based on the identity∫
Λ

exp
(
i < v|SnHP (x)

d(n)
>

)
ν(dx) =

∫
Λ

Ln
δ,0,v/d(n)h(x)σ(dx).

As in Proposition III.8, one may check that the dominant term of of σ(Ln
δ,0,vh) is

λn
δ,0,v ; Corollary IV.6 allows us to conclude. The last assertion of the Proposition is

a direct consequence of the Proposition IV.5 and the Remark 2 which follows.
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Corollary IV.11 Let H =
∑κ

i=1 viHi be the function associated with the closed

form ω and defined in Proposition IV.8. Then the sequence
( 1
d(n)

SnH(x)
)

n
con-

verges in law to a non degenerated 1-dimensionnal stable law of index α = 2δ− k ; in
other words, for any t ∈ IR, one has

lim
n→+∞

∫
Λ

exp
(
it
SnH(x)
d(n)

)
ν(dx) =

{
e−A|t|2δ−k

if δ ≤ 1 + k/2
e−At2 if δ > 1 + k/2.

for some constant A > 0 which depends on H.

We now give the main steps of the proof of Theorem IV.9. The term
1
d(t)

Rt(v) is not

relevant since it tends to 0 in probability. The control of the others terms is more
delicate :

- When δ > 1+k/2, the function h+H is square integrable on (Λ, ν) and satisfies
the conditions ii) and iii) of Proposition IV.8 ; this is in fact sufficient to apply
Proposition III.8 (the same proof holds since the function u 7→ Lδ,u is also twice
continuously differentiable for f = h + H). The associated variance is 6= 0 since the
function h + H is not bounded. Now the fact that the number Nt of terms in the
above sum is a random variable can be treated as in the previous section.

- Assume now δ ≤ 1 + k/2. Since the term
Nt(v)−1∑

k=0

h(T kx) satisfies the clas-

sical Central Limit Theorem and d(t) >>
√
t for such values of δ, the process( 1

d(t)

Nt(v)−1∑
k=0

h(T kx)
)

t
converges to 0 in probability. To look at the last term

Nt(v)−1∑
k=0

H(T kx),

set nt = [t/ν(l)]. By Corollary IV.6, the process
1
d(t)

nt−1∑
k=0

H(T kx) converges to a non

degenerated stable law of index α = 2δ− k ; the control of the difference between the

two sums
Nt(v)−1∑

k=0

and
nt−1∑
k=0

may be lead as in the previous section, since d(t) >>
√
t.

The asymptotic independance of (Xt)t and (Yt)t when δ ≤ 1 + k/2 follows from the
last assertion of Proposition IV.10.
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